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Abstract

Background: Programmed cell death, or apoptosis, is a fundamental physiological process during
normal development or in pathological conditions. The activation of apoptosis can be elicited by
numerous signalling pathways. Ras is known to mediate anti-apoptotic signals by inhibiting Hid
activity in the Drosophila eye. Here we report the isolation of a new loss-of-function ras allele, ras<?,
which causes excessive apoptosis in the Drosophila eye.

Results: This new function is likely to be mediated through the JNK pathway since the inhibition
of JNK signalling can significantly suppress raskP-induced apoptosis, whereas the removal of hid only
weakly suppresses the phenotype. Furthermore, the reduction of JNK signalling together with the
expression of the baculovirus caspase inhibitor p35, which blocks Hid activity, strongly suppresses
the raskP cell death. In addition, we find a strong correlation between raskP-induced apoptosis in the
eye disc and the activation of JNK signalling.

Conclusion: In the Drosophila eye, Ras may protect cells from apoptosis by inhibiting both JNK
and Hid activities. Surprisingly, reducing Ras activity in the wing, however, does not cause apoptosis
but rather affects cell and organ size. Thus, in addition to its requirement for cell viability, Ras
appears to mediate different biological roles depending on the developmental context and on the
level of its expression.

Background

Programmed cell death, or apoptosis, is a fundamental
physiological process in multicellular organisms. It plays
a critical role in normal development where it is required
for proper morphogenesis and tissue homeostasis, as well
as serving a protective mechanism against extracellular
pathogenic agents [1-3]. Apoptosis is also seen in patho-
logical conditions such as when cells are deprived of sur-

vival signals. The biochemical pathway involved in
apoptosis has been shown to be conserved from lower
organisms, such as Drosophila, to mammals. The activa-
tion of apoptosis can be elicited by numerous signalling
pathways.

Drosophila eye development is one of the best models for
studying mechanisms of apoptosis [4]. The compound
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eye is composed of about 800 units called ommatidia.
Each ommatidium has eight photoreceptor cells and six
supporting cells, all differentiated from epithelial cells in
the larval eye imaginal disc [5]. During late pupal devel-
opment, excess cells that are not recruited for differentia-
tion are removed by apoptosis. Thus, mutations which
cause excessive or insufficient apoptosis will disrupt pat-
tern formation during eye development and, conse-
quently, the highly precise structure of the adult eye.
Previous work has revealed two antagonizing pathways
regulating apoptosis during eye development. Notch sig-
nalling is required for apoptosis [6], while the EGFR/Ras
pathway is required for cell survival [7].

In Drosophila, Ras signalling is thought to inhibit apopto-
sis by antagonizing the activity of Hid, which promotes
apoptosis through the degradation of the Drosophila Inhib-
itor of Apoptosis Protein 1 (DIAP1) [8]. As a consequence of
Ras signalling, not only is hid expression reduced, but the
Hid protein itself is phosphorylated and becomes inacti-
vated [9,10]. Interestingly, although ubiquitous expres-
sion of a dominant active form of Ras could inhibit a
majority of cell death that occurs normally in the fly
embryo, cell death is not completely eliminated even in
embryos mutant for a hid null allele [10,11]. This observa-
tion suggests the possibility of a Hid-independent path-
way regulating apoptosis, which can be suppressed
through other means besides Ras. One of the candidate
signals is the PI3K/Akt pathway, which has been shown to
regulate apoptosis in mammals and to be a major down-
stream target of activated Ras [12]. However, so far there
is no evidence to support this hypothesis in Drosophila.

c¢-Jun N-terminal protein kinase (JNK) signaling is
involved in the regulation of morphogenesis, cell prolifer-
ation, cell differentiation, cell migration, and apoptosis,
including tumor progression and metastasis [13-15]. In
the fly, JNK-induced apoptosis has an important role in
the morphogenesis of the wing imaginal disc during
development [1]. During eye development, the overex-
pression of Eiger, the Drosophila homolog of mammalian
TNF, triggers JNK signaling causing the loss of eye tissue as
a result of excessive apoptosis [16,17]. Cross-talks have
been found between the Ras/MAPK and JNK pathways in
regulating cell survival and apoptosis [18,19]. In cultured
mammalian cells, Raf-1 has been shown to promote cell
survival by antagonizing ASK1 [20], a JNK activator [21].

Here we report the isolation of a new loss-of-function ras
allele, raskP, which causes excessive apoptosis in the Dro-
sophila eye. Our analysis shows that, in addition to Hid,
JNK pathway plays a significant role in mediating cell
death in the eye and is antagonized by Ras antiapoptotic
activity. In contrast to its effect in the eye, we also show
that Ras regulates organ size in the developing wing by
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affecting cell size, indicating the developmental output of
Ras signalling is highly context-dependent.

Results

A new loss-of-function ras allele affects ras expression level
We isolated a spontaneous recessive mutation which
causes a reduction of body size in the adult flies (Figure
1A). Although about 60% of the mutant homozygotes die
at the pupal stage (n>200), there are a small percentage of
escapers that survive. Viable mutant females, however, are
found to be partial sterile.

By meiotic recombination and deficiency mapping, we
localize the mutation to the cytological position 85D19-
24 on the third chromosome, which spans a 50-kb region
containing 14 genes http://flybase.org (Figure 2A). PCR
amplification and sequencing of exon sequences of these
genes from mutant animals reveal a 1165-bp KP element
insertion in the second exon (5'UTR) of the Ras1 gene (or
Ras oncogene at 85B) (Figure 2B). Quantitative PCR
(QPCR) showed ras mRNA level was significantly reduced
(Figure 2C) in homozygous mutant larvae (~74% of that
in heterozygous mutant) and adults (~21% of that in het-
erozygous mutant). Complementation tests of the muta-
tion with four known ras loss-of-function alleles, rasP38N
[22], ras85DelB [23,22], rasAC40b, and ras AC17b [24],
failed to rescue ras dependent lethality. These results sug-
gest that the mutation is a partial loss-of-function ras
allele. This is further supported by the rescue of the
mutant phenotype by ubiquitous expression of wild-type
ras driven by Act-GAL4 (Figure 2D). Thus, we named this
new mutation as rask’.

rasKP mutation reduces wing size mainly by affecting cell
size

Although there are no obvious differences in body size
between rask’ mutant and wild-type larvae (data not
shown), survived mutant adult flies show a significant
body weight reduction (Figure 1B and see Additional file
1). Homozygous mutants also have a 23.5% reduction in
wing size owing to a decrease in cell size and not cell
number (Figure 1D, E).

Loss of ras function causes apoptosis in the Drosophila
eye

During Drosophila eye development, Ras contributes posi-
tively to the regulation of cell growth [25] and cell differ-
entiation [26], but negatively to the regulation of
apoptosis [9,10]. Such diverse biological effects are
thought to be achieved through different levels of Ras
activity [27]. rask? homozygous mutants have small and
rough eyes (Figure 1C). To determine the developmental
basis of the phenotype, we compare the growth of third
instar larval eye imaginal discs of rasX” mutant and wild-
type. Both were of similar sizes (data not shown), suggest-
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raskP mutant affects cell size and causes the rough and small eye phenotype. (A) Comparison of body size of a ras<?/
+ male (left) and a ras?/raskP male (right) 4 days after eclosion. (B) Body weights of rask? mutants and controls. (C) rask?
homozygous fly eyes are rough and small (bottom panel). (D) Comparison of wing sizes and wing bristle cell density (insets)
from raskP/raskP (bottom panel) and raskP/+ flies (upper panel). (E) Wing hair size is reduced in raskP mutant, but the total
number of the cells in the wing does not change greatly. (KP denotes raskP). Genotypes: (A) (B) (C) (D) raskP/rask? and raskf/+.

ing that growth was unlikely to be the major reason for the
small eye in the mutant adult. Neuronal differentiation in
the eye discs, as revealed by anti-Elav antibody staining
[28], do occur in rasKP third instar larvae (Figure 3A-C).
However, sections of the adult mutant eyes indicate
ommatidia are largely disorganized though the majority
of them with correct number of out photoreceptor cells

and missing the R7 photoreceptor cells (Figure 3D), indi-
cating that differentiation is affected. Acridine orange
staining in eye discs of the third instar larvae reveals a sub-
stantially increased number of dying cells in mutant ani-
mals (Figure 3E, F). Cell death occurs mainly in two
regions, a band anterior to the morphogenetic furrow
(MF) and a broad region in the posterior part of the eye
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Identification of a KP-element insertion mutation in the ras gene. (A) A cytological map showing the deletions uncov-
ering the mutation to the genomic region spanning the breakpoints at 85D 19 and 85D24. Below the map is an overlay of the

genomic annotation for this region containing 14 genes http:/flybase.org. (B) The genomic organization of the ras gene showing
the position of the KP element insertion. Black boxes indicate coding sequences, white boxes are the UTR sequences, and the
arrows indicate the direction of gene transcription. (C) Normalized real-time PCR data where control level of ras gene expres-
sion is set to |. ras expression level is markedly reduced in the raskP/rask? mutant, especially in the adult flies. (D) Constitutive

expression of wild-type Ras by the actin promoter fully rescues the rask? mutant eye phenotype (left panel), as well as body size

(right panel).

disc. These results indicate that the rough and small eye
phenotype is caused mainly by abnormal apoptosis in the
raskP mutant.

Apoptosis in raskP mutant is partially suppressed by
disrupting Hid activity

In Drosophila, Ras has been shown to promote cell survival
by both down regulating hid expression and inactivating
Hid protein through phosphorylation [9,10]. In order to
test whether raskP-induced apoptosis in the eye is medi-
ated by hid, we completely removed hid function by using
a null allele in a raskP mutant and see if it could suppress
the small eye phenotype. We would expect a strong sup-
pression if, indeed, ras acts solely on hid to promote cell
survival. However, as shown in Figure 4C, there is only a
marginal suppression as compared to raskP mutant alone
(Figure 4A). Consistent with this result, the expression of
the baculovirus caspase inhibitor p35, which has been
shown to completely block hid-induced apoptosis
[11,29], also only partially suppresses the small eye phe-
notype of raskP mutant flies (Figure 4B). When assayed for
cell death in the eye discs of GMR-p35; raskP larvae by
staining with acridine orange, many apoptotic cells are
still observed posterior to the MF (Figure 5G). The data
suggests that raskP-induced cell death is mediated by addi-
tional apoptotic pathway independent of hid function.

Inhibiting the [INK pathway appreciably suppresses raskP-
induced apoptosis

To reveal which pathway mediates anti-apoptosis signal-
ling from Ras, we tested for genetic interaction between
ras and components of several major signalling pathways
involved in growth and survival. One prominent candi-
date is PI3K which has been shown to be a critical effector
of Ras in providing an universal survival signal in mam-
mals [30]. PI3K activates Akt which further phosphor-
ylates a number of substrates involved in the regulation of
apoptosis [12]. In the fly, there is also evidence to suggest
that the activation of the P13-K/Akt pathway has antiapop-
totic activity during embryonic development [9]. To
address whether PI3K/Akt activation can rescue the raskP-
induced cell death, we expressed p110, which encodes
PI3K, or Akt in raskP mutant flies. As shown in Figure 4D
and 4E, GMR-driven expression of PI3K or Akt cannot sig-
nificantly suppress the raskP small eye phenotype. Thus,
Ras is not likely to transduce the survival signal through
PI3-K/Akt in the Drosophila eye. We tested another candi-
date antiapoptotic pathway, which utilizes a Drosophila
Bcl-2-like protein encoded by the Buffy gene [31]. In
mammals, the Bcl-2 protein prevents the release of cyto-
chrome c from mitochondria, and consequently inhibits
the formation of the Apaf-1 apoptosome [32]. As with
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Figure 3

rasP mutant induces cell death in the eye. Photoreceptor differentiation, as visualized by anti-Elav staining, occurs nor-
mally in third instar larval eye discs of both wild-type (A) and rask” mutant (B). (C) Enlarge picture of (B) showing details of pat-
tern formation where neuronal cell recruitment and differentiation is not affected in the raskP mutant. (D) Histological light
section of an adult rask” mutant eye showing a disarrayed pattern of ommatidia. Although the full complement of photorecep-
tor cell types can be found (arrow), many ommatidia occasionally contain fewer photoreceptor cells (arrow head). Acridine
orange staining shows very few apoptotic cells in a wild-type eye disc (E), whereas in the rask’ mutant (F) there is a massive
number of dying cells occurring as a band just anterior to the morphogenetic furrow (arrow head) and broadly in the posterior
region of the eye disc. Genotypes: (A) (E) wild-type; (B) (C) (D) (F) raskP/raskP.

PI3K/Akt, the overexpression of Buffy also cannot suppress
the apoptotic eye phenotype of rask? (Figure 4F).

In Drosophila, the ERK pathway has been shown to serve as
a survival signal that antagonizes JNK signaling from
inducing apoptosis [33]. Thus, it follows that, being an
upstream activator of ERK, Ras antiapoptotic activity may
lie in its ability to inhibit JNK signaling. To address this
possibility, we ask whether the raskP mutant phenotype

can be suppressed by the loss of JNK signalling. We take
the approach of using RNA interference (RNAi) to down
regulate the expression of genes involved in JNK signal-
ling in the rask? mutant. These genes include DTRAF1 and
DTRAF2 (Drosophila TRAF proteins), Hep (a JNK kinase),
and DTAK1 (a JNKK Kinase). The reduction of JNK signal-
ling through any of these genes significantly suppresses
the apoptotic phenotype of rask? (Figure 6A-C and data
not shown). The genetic interaction is specific for the raskP
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Figure 4

Genetic interactions of ras with genes involved in growth and survival. (A) raskP mutant eye is small and rough. (B)
GMR-p35 only partly suppresses the raskP-induced cell death. (C) In the hid null background, raskP-induced cell death is also par-
tially suppressed. Ectopic expression of PI3K (D), Akt (E) and buffy (F) have no effect on the raskP eye phenotype. Genotypes:
(A)GMR-Gal4/CyO; raskP/raskP, (BY\GMR-p35/CyO; raskP/raskP, (C)Df(3L)H99, raskP/hid®50'4raskP, (D)GMR-Gal4/UAS-p I 10; rask/
raskP, (EYGMR-Gal4/UAS-AKT; raskP/raskP, (F)GMR-Gal4/UAS-buffy; raskP/raskP.

allele since the expression of these RNAi constructs by
themselves has no phenotypic consequences. In addition
to these results, the overexpression a dominant-negative
form of Drosophila JNK, BskPN, also slightly suppresses the
apoptosis caused by rask? (Figure 6D). The activation of
the JNK pathway can be achieved by the binding of Eiger
to Wengen, which encode, respectively, the mammalian
homologs of the tumor necrosis factor TNF and its recep-

tor TNFR [16,17,34,35]. We find that RNAi downregula-
tion of Eiger or Wengen also partially rescues the apoptotic
eye phenotype of the rask” mutant (Figure 6E, F). As with
the regulation of Hid activity by Ras, we ask if JNK activity
is also affected. When eye discs from rask” mutant are
stained with an anti-phosphorylated JNK, there is indeed
a significant increase in JNK activity (Figure 6H). These
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Figure 5

JNK and Hid cooperate in raskP-induced cell death. The reduction of the JNK signaling activity and inhibiting Hid activity
by either overexpressing p35 or using the hid null do not have an effect in the wild-type background (A, B, C). However, the
reduction of both activities lead to a strong suppression of the ras” apoptotic phenotype (D, E, F). When p35 or Hep-IR is
expressed under the GMR promoter in the raskP mutant eye disc, apoptosis still occurs as detected by acridine orange staining
(G and H, respectively). However, when both JNK pathway and Hid activity are inhibited in the rask? mutant, very few dying
cells could be detected (). Genotypes: (A) GMR-Gal4/GMR-p35; UAS-DTRAFI-IR, (B) GMR-Gal4/GMR-p35; UAS-Hep-IR, (C) GMR-
Gal4/Cyo; UAS-Hep-IR, Df(3L)H99/hid%50'4, (D) GMR-Gal4/GMR-p35; UAS-DTRAFI-IR, raskP/raskP, (E)GMR-Gal4/GMR-p35; UAS-Hep-
IR, raskP/raskP, (F) GMR-Gal4/Cyo; UAS-Hep-IR, Df(3L)H99, raskP/hido5014raskP . (G) GMR-Gal4/UAS-p35; raskP/rask?. (H) GMR-Gal4/
Cyo; UAS-Hep-IR, rasKP/raskP. (I) GMR-Gal4/GMR-p35; UAS-Hep-IR, raskP/rasKP.
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Figure 6

raskP-induced apoptosis is correlated with JNK signaling. raskP-induced cell death could be suppressed by using RNA
interference (RNAI) to down regulate the endogenous expression of DTRAFI (A), dTAKI (B), Hep (C), Eiger(E), and Wengen
(F). GMR-driven expression of a dominant-negative form of JNK (BskPN) also partly suppresses the raskP eye phenotype (D).
Immunostaining eye discs with an anti-phosphorylated JNK antibody reveals an increased level of activated JNK signaling in
raskP mutant (H) as compared to wild-type (G). Genotypes: (A) GMR-Gal4/UAS-DTRAFI-IR; ras¥f/raskP, (B) GMR-Gal4/CyO; UAS-
dTAK-IR, rasKP/raskP, (C)GMR-Gal4/CyO; UAS-Hep-IR, raskP/raskP, (D) GMR-Gal4/CyO; UAS-BskDN, raskP/raskP, (E) GMR-Gal4/UAS-
Eiger-IR; raskP/raskP, (F) GMR-Gal4/UAS-Wengen-IR; raskP/raskP, (G) wild-type, (H) raskP/raskP.

data are consistent with the notion that Ras could down
regulate JNK activity to inhibit apoptosis.

JNK and Hid signalling cooperate in raskP-induced cell
death

Since the reduction of either Hid or JNK activity alone can
have only a marginal or partial suppression of the raskP-
induced cell death, it raises the possibility that both JNK
and Hid activities could cooperate to fully induce the
apoptosis associated with raskP. To address this hypothe-
sis, we simultaneously reduce both Hid and JNK activities
in the rask? eye by co-expression of both p35 to block Hid-
dependent cell death and RNAi downregulation of JNK
signalling. Indeed, the reduction of both Hid and JNK
activity strongly suppresses the rask? eye phenotype as
compared to the suppression by each alone (Figure 5D,

E). The suppression was specific to ras’since the reduc-
tion of both activities together in a wild-type background
has no phenotypic effect on the eye (Figure 5A, B). The
phenotypic eye suppression is further corroborated by the
almost complete absence of dying cells in the posterior
region of the eye imaginal discs as detected by acridine
orange staining (Figure 51). However, due to the restricted
expression pattern of the GMR promoter to only postmi-
totic cells, apoptotic cells anterior to the MF are not
affected. It is possible that expression of P35 don't com-
pletely block Hid-dependent apoptosis. We thus further
show that when JNK signalling is down regulated in the
raskP, hidm! double mutant background, the apoptotic eye
phenotype is also strongly suppressed (Figure 5F). These
data indicate that Ras could inhibit both Hid and JNK-
mediated apoptosis.
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Discussion

In this report, we present the genetic evidence that Ras
could antagonize JNK signaling, in addition to Hid, to
promote cell survival in the developing Drosophila eye.
Both the genetic interaction and the upregulation of JNK
activity in the rask” mutant support the view that JNK
pathway serves as a target of ras antiapoptotic activity.
raskP-induced apoptosis in fly eye is significantly sup-
pressed by down regulating JNK pathway components
using an RNAi strategy. We further stained the rask? eye
disc with an anti-phospho-JNK antibody and found JNK
phosphorylation was increased, which is consistent with
the notion that JNK signaling is activated in raskP eye disc.

Previous work has suggested that the JNK pathway control
cell death by regulating hid expression [17]. This notion
implies that the impact of Ras signaling on the JNK path-
way might also converge on Hid activity. In rask?, hidru
double mutant flies with downregulated JNK signaling,
the suppression of the apoptotic eye phenotype is much
stronger than the suppression when either JNK pathway
or Hid activity is inhibited alone. These results indicate
that the two pathways have separate effects on cell sur-
vival, and that Ras inhibition of JNK-mediated cell death
is in part Hid-independent.

Previous work has shown that the forced activation of JNK
signaling in the developing eye disc can cause widespread
cell death [16,17,36]. However, the normal physiological
role of JNK signaling during development is still not clear.
The isolation of the raskP allele has permitted us to exam-
ine the role of JNK signaling when it is activated in cells
that are deprived of the Ras/MAPK survival signal leading
to the induction of apoptosis. Studies using this new loss-
of-function ras allele will provide further insight into how
Ras regulates JNK signaling.

Conclusion

Ras is known to mediate antiapoptotic signals by inhibit-
ing Hid activity in the Drosophila eye. Here we analyze a
new ras loss-of-function allele, rask?, which reveals an
additional target independent of Hid in the regulation of
apoptosis. This new function is likely to be mediated
through the JNK pathway since the inhibition of JNK sig-
naling can significantly suppress rask’-induced apoptosis,
whereas the removal of hid only weakly suppresses the
phenotype. However, the reduction of JNK signaling
together with the expression of the baculovirus caspase
inhibitor p35, which blocks Hid activity, strongly sup-
presses the raskP cell death. In addition, we find a strong
correlation between raskP-induced apoptosis in the eye
disc and the activation of JNK signaling. Thus, in the Dro-
sophila eye, Ras may protect cells from apoptosis by inhib-
iting both JNK and Hid activities. Surprisingly, reducing
Ras activity in the wing, however, does not cause apopto-

http://www.biomedcentral.com/1471-213X/9/53

sis but rather affects cell and organ size. Thus, in addition
to its requirement for cell viability, Ras appears to mediate
different biological roles depending on the developmen-
tal context and on the level of its expression.

Methods

Fly Stocks

Drosophila melanogaster stocks were raised on standard
medium at 25°C. The following stocks were kindly pro-
vided by our colleagues. rasP38N [22], rasAC40b, rasAC17b,
and pR5.54RIb1 [24] (Celeste Berg), UAS-buffy [31]
(Helena Richardson), Df (3L)H99 and Hid%5014 (Kristin
White), UAS-Eiger-IR, UAS-Wengen-IR, UAS-DTRAF1-IR,
UAS-DTRAF2-IR, UAS-DTAK1-IR, UAS-Hep-IR, and UAS-
BskPN[14] (Tatsushi Igaki). The UAS-ras, ras85DelB, and
all the deficiency lines used in this report were from the
Bloomington Drosophila Stock Center.

Mapping and characterization of rasKP allele

The raskP mutation was mapped to the third chromosome
by chromosome segregation. rask’ mutation was further
localized by meiotic recombination mapping to between
st and cu using a multiply marked chromosome (Gap1, th,
st, cu, sr, e and ca). Deficiency mapping with
Df(3R)ED5429, Df(3R)by416, and Df(3R)GB104, narrows
the rask? mutation to the cytological region 85D19-
85D24. The open reading frames of a total of 14 genes in
this region from the rask” mutant were PCR amplified and
sequenced. The ras? mutation is found to be an insertion
of a 1165 bp fragment of a KP element in the 2nd exon of
ras85D lying 88 bp upstream of the start codon.

Analysis of MRNA expression

RNA from adult flies or third instar larvae was prepared
using TRIzol Reagent (Invitrogen). RNA was reverse-tran-
scribed with the RNA PCR Kit AMV (TaKaRa). To detect
the mRNA level of ras, quantitative PCR (QPCR) was car-
ried out using the Brilliant SYBR Green QPCR master mix
(STRATAGENE) according to the manufacturer's instruc-
tion. A 254 bp target sequence for ras was amplified with
the forward primer 5'-CCAGAACCATTTCGTGGACG-3'
and reverse primer 5'-ACCTCTTCGGCATCCITTACG-3'.
For the internal control, a 247 bp target sequence for actin
was amplified with the forward primer 5'-GCTCT-
TCAAAGGCAGCAACCAG-3' and reverse primer 5'-
GCACAGCCACGACTCTTACGATTAG-3".

Size comparison

All experiments with live flies were conducted at 25°C.
For size comparison, embryos were collected every hour
to synchronize the developmental stages of flies. Fifty
embryos from the same collection were raised in one vial.
The animals were reared under identical, uncrowded con-
dition. Relative body weight comparison was done by
measuring the weight of a group of flies from either the
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test genotype (raskP/raskP) or its sibling control (raskP/+).
Wing areas were measured via Adobe Photoshop 7 (for
each genotype, 15 female fly wings were checked). The
area of whole wing was measured, exclusive of the alula
and the costal cell. Cell density was assessed by counting
the number of wing hairs on the dorsal wing surface in a
5000 um? area just posterior to the posterior crossvein
(PCV).

Histology and immunofluorescence

Eye disc fixation and staining, as well as adult eye histo-
logical section, were performed as described [37]. Acrid-
ine orange staining of third instar larval eye discs was
performed according to standard procedure [38]. Eye
imaginal discs were dissected from third instar larvae in
PBS and then fixed in 4% paraformaldehyde in PBST
(0.3% Triton X-100 in PBS) for 30 min at room tempera-
ture (RT). Blocking was performed by incubating samples
in PBST (0.4% Triton X-100 in PBS) with 5% NGS (Nor-
mal Goat Serum, Santa Cruz) for at least 1 h at RT. The fol-
lowing antibodies were used: rat anti-Elav (1:200) and
rabbit anti-active JNK antibody (1:200; Promega). Texas
Red-conjugated goat anti-rat IgG and FITC-conjugated
goat anti-rabbit IgG (1:200; Santa Cruz) were used for sec-
ondary antibodies, respectively. The stained tissues were
analyzed by confocal microscopy (Leica TCS-NT).
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