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Abstract

Background: Cystic fibrosis transmembrane conductance regulator (CFTR) was shown
previously to modify stretch induced differentiation in the lung. The mechanism for CFTR
modulation of lung development was examined by in utero gene transfer of either a sense or
antisense construct to alter CFTR expression levels.

The BAT-gal transgenic reporter mouse line, expressing [3-galactosidase under a canonical Wnt/[3-
catenin-responsive promoter, was used to assess the relative roles of CFTR, Whnt, and parathyroid
hormone-related peptide (PTHrP) in lung organogenesis. Adenoviruses containing full-length
CFTR, a short anti-sense CFTR gene fragment, or a reporter gene as control were used in an intra-
amniotic gene therapy procedure to transiently modify CFTR expression in the fetal lung.

Results: A direct correlation between CFTR expression levels and PTHrP levels was found. An
inverse correlation between CFTR and Whnt signaling activities was demonstrated.

Conclusion: These data are consistent with CFTR participating in the mechanicosensory process
essential to regulate Wnt/p-Catenin signaling required for lung organogenesis.

Background

Organogenesis in the lung requires the sequential devel-
opment of the large airways, bronchioles and alveoli. The
lung begins as a simple structure with increasing complex-
ity that is necessary for efficient air exchange at maturity.
Recently, several laboratories have demonstrated that this
complex process involves the promotion of mechanical
stretch [1-4]. Specifically, muscle contractions of the large
airways compress amniotic fluid in the fetal lung generat-
ing a pressure gradient that is converted to biochemical
signals necessary for cell differentiation.

Mechanical force modulation of biochemical processes is
a well known phenomenon that is mediated by mul-
timeric proteins [4,5]. Mechanicosensing and the genes
involved, however, are less well known. Sensing mole-
cules such as integrins, ion channels, and kinase-linked
receptors have been implicated in changes in gene expres-
sion related to stretch [6]. Most of the evidence from these
studies implicates vascular responses to stretch in hemo-
dynamic stasis, although little is known about these sen-
sors in fetal organogenesis.
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Recently, control of muscle contractions via the Rho
kinase-dependent and independent pathways was shown
to be important in lung development [3]. In particular,
the cystic fibrosis transmembrane conductance regulator
(CFTR) was found to influence muscle contractions in
lung development via a Rho kinase-independent mecha-
nism involving ATP and calcium [7]. In other work, we
and others demonstrated that the canonical Wnt/p-cat-
enin pathway plays crucial roles in lung organogenesis
[8,9]. These studies utilized our laboratory's transient in
utero gene transfer technique [10] with sense and anti-
sense constructs to modulate gene expression [11-16].
This technique has the advantage in lung development
studies by transiently targeting the developing respiratory
epithelium for temporal modulation of gene expression
without any inflammatory consequences and no prema-
ture expression leakage.

In the study reported here the role of CFTR in downstream
regulation of lung differentiation effectors was examined.
Specifically, the relationship between CFTR function and
Wnt/B-catenin signaling in lung development was exam-
ined. Previous studies have suggested that Wnt signaling
via a stretch-induced mechanism involving parathyroid
hormone-related peptide (PTH1P) is required for normal
lung development [17-20]. Therefore, we used our exper-
imental system to determine if altering CFTR expression
has downstream effects on Wnt and PTHrP which would
provide further evidence of CFTR involvement in mechan-
icosensing necessary for normal lung development.

Results

CFTR influences Wntl5-catenin signaling

BAT-gal reporter mice express B-galactosidase under the
control of Wnt//B-catenin-responsive elements [24]. To
evaluate the role of CFIR in modulating the Wnt signaling
cascade, fetuses from time pregnant BAT-gal mice were
injected at E15, E16, and E17 via the amniotic fluid using
our established techniques [11,23,25]. Recombinant ade-
noviruses with either eGFP (AdCMVeGFP; control), CFITR
(Av1CF2; [12,13,15]), or antisense CFTR (AdCMVascftr;
[22] were used to alter levels of CFTR gene expression in
the developing lung. Tissues were harvested at 24 hours
post-gene transfer, homogenized (3-4 fetuses/pool), and
B-galactosidase enzyme and total protein assays per-
formed and the enzymatic activity was expressed as units/
ug protein.

BAT-gal expression during normal lung development was
found to be highly regulated. At E16 little if any Wnt/p-
catenin-dependent B-galactosidase activity was detected
in control tissues (Fig. 1). Enzyme activity peaked at E17
and then decreased by E18. CFIR over expression resulted
in a small but significant (p < 0.05) increase in BAT-gal
expression at E16. At E17 there was a non-significant
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[-galactosidase activity following in utero modifica-
tion of CFTR expression. Bat-gal mice were injected at
EIS5, EI6, or EI7 with adenoviruses expressing eGFP (con-
trol), antisense CFTR (ASCFTR), or CFTR and lungs har-
vested 24 hours later. Tissue was homogenized and (-
galactosidase enzyme assays and total protein determinations
performed. * p < 0.05.

decrease in activity in the CFTR-treated animals, and by
E18 there was no difference between control and CFTR-
treated animals. In contrast, antisense knockdown of
CFTR showed highly significant (p < 0.01) increases in
BAT-gal activity at E16, E17, and E18 when compared to
either control or CFTR-treated animals consistent with a
relationship between CFIR expression and canonical Wnt
signaling between E16-E18 in the mouse lung.

The distribution by fluorescent immunohistochemistry of
B-galactosidase expression was significantly different in
fetuses treated at E15 and examined at E16 (Fig. 2A, C, D),
AdCMVeGFP, control, lungs showed little or no expres-
sion as would be expected from the enzyme assay data
presented in Fig. 1. Antisense CFIR treated lungs, which
had the largest increase in -galactosidase enzyme activity,
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exhibited expression in randomly distributed individual
cells (arrows; Fig. 2C). In contrast, CFIR over expression,
which showed a smaller but significant increase in
enzyme activity, exhibited increased clusters of B-galactos-
idase expressing cells (arrows; Fig. 2E). In fetuses treated
at E16 and examined at E17, normal, control, and CFTR
over expression (Fig. 2B and 2F), B-galactosidase was seen
around small airways with some expression in the paren-
chyma consistent with CFIR accelerating the normal
developmental Wnt/B-catenin signaling. In contrast, inhi-
bition of CFTR expression at E16 resulted in further
expansion of B-galactosidase positive cell populations to
the parenchyma (Fig. 2D). Thus, consistent with the
results of Fig. 1, Wnt/B-catenin signaling patterns are
dependent upon CFIR expression levels. Over expression

http://www.biomedcentral.com/1471-213X/8/70

facilitated the normal pattern for Wnt/B-catenin and anti-
sense inhibition of CFTR resulted in an abnormal increase
and distribution in foci of B-galactosidase positive cells.

Developmental programming of PTHrP expression by
CFTR

Based on the previously demonstrated relationship
between mechanical stretch, Wnt signaling and PTHrP
expression [17,19,20,26] and our previous work on CFTR
that has shown that it modulates stretch to influence gene
regulation in the developing lung [7], we investigated the
relationship between CFTR-dependent stretch and PTHrP
levels.

Figure 2

Distribution of 3-galactosidase expression in embryonic lungs. Inmunohistochemistry was used to identify cells
expressing 3-galactosidase in Bat-gal mouse fetal lungs from either E16 (Panels A, C, & E) or E17 (Panels B, D, & F). 24 hours
prior to harvest animals were treated with either AACMVeGFP (control; panels A & B); AdCMVascftr (antisense CFTR; Panels
C & D); AvICF2 (CFTR; Panels E & F). 10 um scale bar is presented in Panel F.
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Immunohistochemistry was used to visualize PTHrP
expression at E17, the time when CFTR expression had the
greatest effect on BAT-gal reporter expression (Fig. 1). In
control animals low levels of PTHrP were detected in the
developing parenchyma (Fig. 3, Panel A). In marked con-
trast, down-regulation of CFTR with the antisense con-
struct resulted in a dramatic decrease in PTHrP
immunostaining (Panel B), whereas CFIR over expression
(Panel C) resulted in a significant increase in PTHrP
expression in comparison to both control- and antisense
CFTR-treated lungs (Panel C). Quantitative evaluation of
PTHrP showed statistically significant differences between
control-, antisense CFTR-, and CFTR-treated lungs (Panel
D). Thus, there was a direct correlation between CFIR
expression and PTHrP levels in the developing lung at
E17.

Discussion

CFTR is expressed at high levels during specific periods of
lung organogenesis and expression subsequently
decreases by 75 fold as the lung matures [27,28]. This pat-
tern of expression suggests a role for this gene in normal
lung development. The finding that CFIR has a role in
mechanical stretch which is necessary for lung organogen-

Figure 3
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esis [7] provides a possible mechanism for this gene in
lung development.

Specifically, our findings of a direct correlation between
CFTR expression and PTHrP levels (Fig. 3) in developing
lung and the inverse correlation with Wnt/f-catenin sign-
aling (Fig. 1 &2) are consistent with the mechanical
stretch-dependent development of surfactant produc-
tion[29]. These data collectively reveal a possible mecha-
nism for how a chloride channel, CFIR, could have a
global effect on lung development. By directly effecting
mechanical stretch necessary for generating lung complex-
ity this chloride channel could have an essential role in
normal lung organogenesis.

In the normal Bat-gal mouse lung Wnt expression peaked
at a specific time (Fig. 1) in lung development that may be
defined by the total induced stretch (Fig. 4, Arrow). If
CFTR increases stretch as shown previously [7] and illus-
trated in Fig. 4, then one would predict that the slope of
the change in stretch would be increased. Thus, Wnt
expression would peak earlier for a shorter time and lower
level. Antisense CFTR, however, would lower the slope of
the stretch effect, prolonging Wnt activation and increas-
ing its activity. Thus, the changes observed in Fig. 1 can be
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PTHrP in lung development. Bat-gal mice were injected with either AACMVeGFP (Panel A), AdCMVascftr (Panel B), or
AvICF2 (Panel C; Adenovirus CFTR) at EI5 and tissues harvest at E16. Tissues were stained with DAPI (Blue), Phalloidin
(Green), and immunofluorescent analysis of PTHrP (Red). Slidebook software was used for pixel counting of PTHrP in a series

of slides (Panel D).
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explained by a change in CFTR-dependent, stretch-
induced regulation of Wnt. This interpretation is consist-
ent with the previous work by the Torday and Rehan
group showing the relationship between stretch and Wnt
[19,26]

Our previous studies examining the effects of in utero
CFTR gene transfer on lung growth and development
showed that over expression of CFIR resulted in increased
bronchial cell differentiation and proliferation, decreased
alveolar complexity, and increased stretch [7,12]. In this
paper we demonstrated that CFIR over expression
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Figure 4

Relationship between stretch and Wnt. Changes in
CFTR levels such that the nexus (Arrow) for maximal
stretch-dependent Whnt activation is reached sooner and
transit time across this stimulus altered.
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increases PTHrIP (Fig 3); and decreased CFIR expression
dramatically increased Wnt signaling (Fig 1, 2). If one
examines all these CFTR-dependent effects both previ-
ously published [7,12,13,15,22,30] and current data pro-
vided here, CFIR, a chloride channel, has many,
seemingly independent, affects on lung organogenesis.
However, stretch was previously shown by Torday and
Rehan [17,19,26,29,31] to correlate directly with PTHrP
which controls a cascade in which lower PTHrP (from
lower stretch) increases Wnt activation that leads to
increased bronchial cell differentiation and proliferation
and decreased alveolar complexity. Thus, it is possible to
correlate all the effects seen independently by altering
CFTR levels in the fetal lung with a direct effect of CFTR on
stretch that then modifies the Torday-Rehan PTHrP-Wnt
pathway for terminal differentiation of the lung. Initially,
mechanical stretch promotes proximal airway develop-
ment but with growth, distal airway differentiation results
in decreased pressure and Wnt-dependent alveolar differ-
entiation and complexity. Our results correlated with
those of Torday and Rehan [17-20,31-34] suggest that
CFIR could play a central role in this process along with
other genes that affect mechanical stretch including Rho
kinase [35] and ENaC [36,37].

Delineation of the exact role of CFTR in this process
requires further investigation. However, several recent
findings may suggest a mechanism. Treharne et al. [38]
recently showed that CFTR function was linked to casein
kinase 2, a rather promiscuous protein kinase. In addi-
tion, CFIR function is known to be associated with actin
filaments [39,40] and recent work has shown that a
cAMP/protein kinase A-dependent annexin 2 S100A10
complex with CFTR also affects its function [41]. These
observations provide increasing evidence that the CFTR
gene product plays important roles beyond that of a chlo-
ride channel and that it is part of a complex of molecules
within the cytoskeleton of the cell that have a high poten-
tial for kinase-mediated gene regulation. Therefore, we
speculate that stretch of the cytoskeleton could be the sig-
nal to modulate CFIR function and mechanical stretch.
Thus, CFTR could function as a mechanicosensor essential
for lung organogenesis.

Conclusion

During late lung development CFIR probably acting
through a mechanicosensory pathway regulates Wnt/j3-
Catenin signaling.

Methods

BAT-gal Wnt/-Catenin Reporter Mice

Generation and characterization of the BAT-gal mice have
been previously described [21]. E1 was defined as the day
that the vaginal plug was observed.
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In Utero Gene Transfer

In utero gene transfer used three first generation adenovi-
rus vectors. Avl1CF2 is a recombinant with the CFTR gene
(Genetic Therapy, Inc), AdCMVascftr is an antisense CFTR
construct previously described [22] and AdCMVeGFP
with the green fluorescent protein gene (J. Kolls, Univ.
Pittsburgh) was used as a control virus. All viruses were
resuspended in Dulbecco's minimal essential medium
(DMEM) and injected into the amniotic fluid as described
previously [23]. Fetuses were injected at gestation day
E15, E16, or E17. Individual fetuses were injected with a
final amniotic fluid virus concentration of 10° pfu/ml. All
animals were harvested at 24 hours post-gene transfer.

Enzyme Assay

Beta galactosidase activity was measured using Applied
Biosystems Galacto-Light Plus System (catalog # T1007).
Lung tissues were disassociated in the supplied lysis solu-
tion, endogenous activity was lowered by heat inactivat-
ing for 50 minutes at 48°C and then measured in
triplicate. Measurements were made using a tube lumi-
nometer (Monolight 2010). Protein concentrations were
measured using Bio-Rad Dc Protein Assay (#500-0112).

Immunofluorescent Microscopy

Lung tissue fixed in 4% paraformaldehyde was embedded
in Cryo-Gel and sectioned. Sections were stained with
PTHrP (Santa Cruz, sc-20728) and the protein of interest
was tagged with Alexa Fluor donkey anti-rabbit 568
(Molecular Probes, A-10042). Nuclei were stained with
DAPI and actin was stained with Phalloidin 488 (Molecu-
lar Probes, A-12379).

Statistical methods

Image software SLIDEBOOK was used to capture images
and then quantitatively evaluate pixel count. Blinded ran-
dom fields from taken from 5 independent sections were
used. Graph Pad Prism was used for statistic analysis
(unpaired, T-test).
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