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Abstract

BiolVled Central

Background: Examination of late gestation developmental genes in vivo may be limited by early
embryonic lethality and compensatory mechanisms. This problem is particularly apparent in
evaluating the developmental role of the cystic fibrosis transmembrane conductance regulator
(CFTR) gene in the cystic fibrosis (CF) phenotype. A previously described transient in utero
knockout (TIUKO) technology was used to address the developmental role of CFTR in the rat lung.

Results: Rat fetuses transiently treated with antisense cfir in utero developed pathology that
replicated aspects of the human CF phenotype. The TIUKO CF rat developed lung fibrosis, chronic
inflammation, reactive airway disease, and the CF Antigen (MRP8/14), a marker for CF in human
patients, was expressed.

Conclusions: The transient in utero antisense technology can be used to evaluate genes that
exhibit either early lethality or compensating gene phenotypes. In the lung CFTR is part of a
developmental cascade for normal secretory cell differentiation. Absence of CFTR results in a

constitutive inflammatory process that is involved in some aspects of CF pathophysiology.

Background

The in utero gene transfer technology devised in this labo-
ratory [1] was originally developed to circumvent the
inflammatory response seen after birth with adenoviral-
mediated gene transfer. During the course of these exper-
iments it was discovered that the in utero transfer of the
gene for cystic fibrosis transmembrane conductance regu-
lator (cftr) to normal rat fetuses resulted in phenotypic
changes in the neonatal lungs [2]. At the time of gene
transfer the targeted epithelial cells were undifferentiated
multipotential cells [3]. Administration of cftr to this epi-
thelium using an adenovirus vector system resulted in per-
sistent phenotypic changes in cells although the
expression of the transgene was transient. These data pro-

vided the first insight that CFIR expression during the
fetal period could permanently alter the differentiation of
lung epithelial cells. The permanent functional changes in
the in utero cftr-treated rats included an enhanced resist-
ance to pulmonary bacterial infection three months after
birth [2].

At the same time, other laboratories were examining the
temporal and tissue-specific expression of CFTR. CFTR
lung expression is greatest during the fetal period where it
is localized to airway epithelial undifferentiated multipo-
tential cells [4-9]. As these multipotential cells differenti-
ate, the expression of CFTR dissipates and the adult lung
expresses only a fraction of that expressed during the fetal
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period. Thus, CFIR resembles other developmentally
important genes in its expression at specific times during
organogenesis [10-12].

In addition to its role as a chloride channel in the mature
lung, CFTR's expression in undifferentiated epithelial cells
suggested another role (or roles) during development.
Moreover, this raised the question of how much of CF dis-
ease pathology could be attributed specifically to the lack
of CFTR expression during differentiation and how much
could be attributed to lack of a chloride channel in the
mature lung.

These questions prompted further experiments by this
laboratory in the CF knockout mouse. Reversal of the
lethal phenotype of the CF (cftr -/-) mouse following tran-
sient in utero expression of cftr [13] confirmed the role of
this gene in gut development. Because of the rapid cell
turnover, the human CFIR transgene was detected in the
fetal gut for up to 72 hours post-treatment but not after
birth. The in utero gene therapy did not permanently
replace the CFIR-encoded cAMP-dependent chloride
channel but rescued the mice from the disease phenotype
and reversed biochemical markers specific to the knock-
out phenotype [14]. These data established that extra uter-
ine expression of CFTR was not required for the correction
of the intestinal obstruction in cftr -/- mice.

Additional insight into the role of CFIR in secretory cell
development was obtained when we began to examine
the effects of CFIR following in utero over expression in
homozygous normal mouse pups and discovered that
over expression resulted in a lethal phenotype due to epi-
thelial cell hyperplasia [11]. Characterization of the secre-
tory epithelium following CFTR over expression during
fetal development has now demonstrated accelerated
lung epithelial cell differentiation in the rat, mouse and
nonhuman primate [2,14-16].

Experiments examining the developmental role of CFTR
relied on either a knockout mouse model that poorly
mimicked human lung disease or over expression studies
in normal animals. At this point it seemed that only two
research approaches were available to determine which
aspects of CF pathology were due to the lack of CFITR
expression during development. Reversal of human CF by
transient in utero gene therapy is currently under consider-
ation by our laboratory, but is many years from practical
therapeutic consideration. Alternately, one could attempt
to transiently inhibit in animals models CFTR production
in utero to induce aspects of the adult CF disease pheno-
type in the presence of normal adult levels of CFTR.

The in utero gene transfer method developed by this labo-
ratory uses small quantities of recombinant adenovirus at
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times during gestation when the lung and intestine epi-
thelium is largely composed of undifferentiated multipo-
tential cells [1]. Recombinant adenoviruses at 108 pfu/ml
of amniotic fluid have been transferred to mice, rats, and
rhesus monkeys [2,14-16]. The high transfer efficiency
and absent immune response suggested that it was possi-
ble to use recombinant adenoviruses to transfer antisense
genes to the lung and intestinal epithelium and tran-
siently inhibit gene expression. Because undifferentiated
multipotential cells were targeted, transfer of the antisense
analog of a developmentally active gene would have the
potential to significantly affect the developmental cas-
cades in the lung and intestines. Recently, we developed a
transient in utero knockout (TIUKO) technology to inhibit
expression of specific genes in the fetal lung and intestine
[17]. In this paper the TIUKO technology is applied to the
question of the developmental role of CFIR in the cystic
fibrosis phenotype.

Results

Inhibition of CFTR expression using TIUKO

An adenovirus was constructed from a ATCC plasmid con-
taining exons 1-6 of cftr included in the [18] cloned into
arecombinant adenovirus in the 3'-5', antisense direction
(AACMVAScftr). This virus was used for in utero gene
transfer into fetal rats at 16 days gestation.

Sprague-Dawley rats were used in these experiments.
There were 75 rats from 7 litters in the control group and
114 rats from 11 litters in the TIUKO group. The rats were
treated with AACMVAScftr at 16 days gestation and were
evaluated daily from 18-22 days gestation and up to 1
year following birth.

The choice of controls for these experiments was a pri-
mary consideration. We showed in several publications
that over expression of CFTR in normal mice and rats
results in altered lung morphology. Thus, neither cftr con-
structs nor any sense portion of this gene could be used as
a control. An adenovirus with exons 1-6 in the sense
direction would not express a truncated product and thus
its expression could not be detected as a control. The ade-
novirus constructs with beta-galactosidase (AdCMVlacZ)
and green fluorescent protein (AdCMVgfp) were used in
previous experiments in several hundred individual
fetuses with no effect on the viability, structure, or func-
tion of the lung [1,15,16]. Thus, these two adenoviruses
with reporter genes were used as negative controls for nor-
mal organogenesis.

The effects of AACMVAScftr on CFTR expression in rat tis-
sues was compared to control (AdCMVlacZ-treated) lungs
at 24 and 72 hours post antisense therapy by fluorescent
immunohistochemistry. As shown in Fig. 1A, deconvolu-
tion microscopic analysis readily detected CFIR in the
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Figure |

Inhibition of CFTR expression in rats treated in utero with antisense c ftr . Sprague-Dawley rats at 16 days of age
were treated with either AACMVlacZ (Panel A, B, C) or AACMVAScftr (Panel D). At 19 days gestation lungs were harvested
and CFTR expressing cells visualized by fluorescent microscopy with an Alexa 568 (RED) secondary and a goat anti-CFTR pri-
mary antibody. Nuclei were stained with DAPI (BLUE). Original Magnification Panels A & C 100x; Panels B & D 400x.

normal embryonic lungs. The specificity of the immuno-
histochemistry was shown by the blocking of all fluores-
cence using specific blocking peptides (Fig. 1C).
Comparison of control (Fig. 1B) and antisense CFIR
treated (Fig. 1D) revealed decreased expression of CFIR in
antisense treated lungs.

Reduction of the antisense transgene expression is diffi-
cult to measure, because at a maximum only 108 cells
would be affected if one achieved 100% infection effi-
ciency. Transfection efficiency via the amniotic fluid is less
than 10% so only between 1097 cells are affected in the
tissue. Thus, real time PCR, northern blots, and western
blots lack the sensitivity to detect these changes as shown

in our previous publication on the TIUKO c-myc mouse
[17]. Thus, the only method available to quantitate reduc-
tion in target gene expression in the TIUKO method is
image analysis of random sections from multiple, inde-
pendently treated lungs. As shown in Fig. 2, image analy-
ses of the relative levels of CFTR expressed per cell in the
AdCMVAScftr-treated tissues were performed.

Statistically significant reduction in CFIR levels was
observed at 24 (p = 0.014) and 72 hours (p = 0.005) post-
TIUKO cftr therapy. Thus, as in our previously published
TIUKO c¢-myc model, the TIUKO cftr therapy decreases
expression of the target gene at a critical time in lung
development.
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Quantitation of CFTR expression following infection with AACMVAScftr. Fetuses were treated at 16 days gestation
with either AdCMVlacZ (control) or AACMVAScftr and lungs harvest at 24 and 72 hours post-gene transfer. Lungs from 5 ani-
mals were cryo-sectioned and CFTR visualized by immunohistochemistry. Image analysis on the deconvoluting microscope was
performed and the results standardized for the number of cells by nuclear staining with DAPI

Airway and parenchymal changes in the CF TIUKO rat
Focal areas of fibrosis are seen in the lungs of congenic CF
mice as well as humans at autopsy [19]. Rats were fol-
lowed sequentially for lung histological examination to
determine if they would develop any chronic lung
changes that mimicked CF lung pathology. Both the air-
ways and parenchyma were examined.

Comparison of the histology of lungs from control and
AdCMVAScftr-treated animals during the neonatal period
revealed little or no gross structural pathology (data not
shown). Development of pulmonary histopathology
became apparent in adult rats by 100 days of age follow-
ing the in utero antisense cftr treatment.

The most notable histologic change was in the airways,
which appeared thickened and fibrosis. Morphometric
analysis was used to quantitate airway wall dimensions on
lung sections from 100 day old rats following staining
with hematoxylin and eosin [20,21]. The wall area was
determined by digitizing the area excluding airway epithe-
lium and cartilage. The corresponding segment of sub
epithelial basement membrane was digitized and used as
a reference length to normalize airway wall area[21]. As
shown in Table 1, there was a significant increase in air-
way wall thickness in the in utero antisense cftr treated ani-
mals as compared to their aged-matched controls. The
average internal airway circumference was not statistically
different between the treated and control group. These
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Table I: Morphometric analysis of fibrosis and airway thickness in control and AACMVAScftr treated lungs at 100 days of age

Sample Average Internal Average area (A) Average A/l Averageairway average average C/V
Circumference (I) Protein (V) collagen (C)
N = 20/group N = 24/group
AdCMVgfp-treated 101.8 452.1 4.49 6595 + 1829 2921 £ 810 0.5251
AdCMVAScftr-treated 114.7 833.9 7.27* 6965 + 911 11665 + 1829 |.6648%*

*p =023 % p <000l

measurements insured that similar sized airways were
compared between the two groups.

Masson's Trichrome was used to differentiate collagen
from smooth muscle and elastin surrounding the airways
to better visualize and quantitate the extent of airway
fibrosis. Collagen following this stain was visualized as a
dense bluish-tinged material as shown surrounding the
membranous airways in Figure 3. There was increased col-
lagen in both the small (Fig. 3C) and large airways (Fig.
3D) of the AACMVAScftr-treated rats when compared to
control airways of the same size (Fig. 3A &3B). Morpho-
metric quantitation of airway collagen was performed
using image analysis [20]. Airway collagen was increased
significantly (p < 0.001) in the antisense treated animals
as determined by an increased collagen/protein ratio
(Table 1). Total lung collagen was also quantitated using
image analysis [22]. As shown in Figure 4, statistically sig-
nificant (p = 0.0029) increase in total collagen was
confirmed.

Chronic inflammation is another feature of CF lung
pathology in humans [23]. At 100 days of age, prominent
inflammatory cell infiltrate was present in the lung paren-
chyma of the AACMVAScftr treated rats (Fig. 5B &5D) that
was not present in the AACMVgfp-treated control animals
(Fig. 5A &5C). We have previously demonstrated that in
utero adenoviral-mediated transgene expression decreases
rapidly in the 30 days post-transfer [2]. Thus, the adult rat
lung pathology progressed in the absence of significant
antisense cftr expression. In addition, although these ani-
mals were not kept in a germ free environment, repeated
bacterial challenge was not required for the induction of
either lung inflammation or fibrosis. All animals greater
than 60 days of age thus far examined (n = 12) have had
significant pulmonary inflammatory infiltrate.

Expression of CF-specific proteins following TIUKO cftr

MRP8 and 14 are proteins previously used as clinical
markers of cystic fibrosis. These proteins are calcium bind-
ing proteins that form a heterodimer, are produced in
neutrophils, and are associated with wound healing.
Importantly, MRP8 was originally called "CF antigen"
because it was found to be elevated in the serum of CF

patients. The protein was subsequently found to be a het-
erodimer of MRP8 and MRP14. It was used to identify CF
affected individuals as well as heterozygous carriers prior
to the discovery of the cfir gene. Because of their signifi-
cance the expression levels of these proteins were con-
firmed by western blot analysis in both mice and rats
following AACMVAScftr gene therapy.

To determine if MRP8/14 expression was directly associ-
ated with the inhibition of CFIR expression, and not
induced by post-natal events, western blot analysis of
expression was followed sequentially over the first 96
hours post antisense cftr therapy in utero . Minimally
detected levels of MRP 8 were expressed in control fetuses
(Fig. 6; AACMVgfp-treated animals). In the AACMVAScftr
-treated rats, a gradual increase in MRP 8 expression was
documented over 96 hours post-therapy. Similar results
were obtained with MRP 14 (data not shown). Thus,
increased CF Antigen expression was correlated with the
decreased expression of CFTR following antisense cftr
gene therapy.

Altered airway reactivity in antisense cftr-treated rats

In cystic fibrosis patients, alteration in airway reactivity
was previously documented [24,25]. To evaluate the effect
of in utero antisense cftr on the airway development rats
treated at 16 days gestation with AACMVAScftr or AdCM-
VlacZ were maintained in filtered cages and analyzed for
airway reactivity to acetylcholine at 6-13 months of age.
As shown in Fig. 7, control animals challenged with neb-
ulized acetylcholine showed only small changes in airway
resistance (Raw) at 3.125 and 12.5 mg/ml concentrations.
In contrast, age-matched, antisense cftr treated animals
were highly reactive to the low concentrations of acetyl-
choline. In addition, maximal stimulation at 50 mg/ml in
the TIUKO CF rats was over twice that observed in control
animals. The differences between control and TIUKO CF
rats was highly significant (p < 0.0001)

Discussion

The development of the TIUKO procedure permits the
examination of mid-gestation developmentally required
genes in the absence of both early lethality and compen-
satory mechanisms that ameliorate the final disease
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Figure 3

Airway fibrosis following in utero AACMVAScftr therapy. Lung sections were stained with Masson's Trichrome to visu-
alize collagen (blue) in 100 day old rats. There was increased collagen in both the small (Panel C) and large airways (Panel D) of
the AACMVAScftr-treated rats when compared to control airways of the same size (Panels A and B). The morphometric quan-
titation of this fibrosis (Table 1) confirmed that these changes were consistent throughout the lung fields examined. Original

magnifications 100x.
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Collagen in rat lungs following in utero antisense cftr
gene transfer. Rat fetuses at |6 days gestation were
treated with either AACMVlacZ (control; black) or AACM-
VAScftr (ASCFTR; red). At 120 days of age 5 animals in each
group were harvested and 5 random sections were analyzed
for total collagen following Mason trichome staining using
image analysis as described in Methods

phenotype. Previously, transient expression of the anti-
sense to a known growth factor ¢-myc [17] demonstrated
its requirement for normal cell expansion in both the
lungs and intestines. The key element in the TIUKO
method is the targeting of multi-potential, undifferenti-
ated cells. Because the lung is developing rapidly at the
time, organogenesis can be dramatically affected by inhi-
bition of genes involved in a developmental cascade.
Thus, inhibition of ¢c-myc gave rise to severely hypoplastic
lungs and stunted villi formation in the intestines, even
though fewer than 107 cells were affected by the antisense
transgene. This method can be used to dissect the devel-
opmental pathway of different epithelial cell types in
these organs.

One caveat with the TTUKO method, however, is the diffi-
culty in measuring the decrease in expression of the target
gene. Because the population of affected multipotential,

http://www.biomedcentral.com/1471-213X/5/2

Figure 5

Chronic inflammation following in utero AACMVAS-
cftr therapy. Lung fields from rats at 100 days were exam-
ined for inflammation following hematoxylin and eosin
staining (Panels A & B). Prominent areas of inflammatory cell
infiltrate surrounding membranous airways were demon-
strated in AACMVASCcftr treated rats (Panel B) and were not
found in AdCMVgfp control animals (Panel A). Staining of the
areas of inflammatory cell infiltrate with Masson's Trichrome
demonstrated interstitial fibrosis associated with the inflam-
mation (Panels C and D). Original magnification Panels A, B
and C-100%; Panel D-400x%.

undifferentiated cells represent a small proportion of the
total, rapidly expanding lung population, it is impossible
to detect the changes in gene expression via real time PCR,
northern blots, or western blots. However, as shown
previously two independent methods, antisense and
ubiquitin targeted, down regulation of C-MYC [17]
yielded identical phenotypes and immunofluorescent
quantitated decrease of the target transgene,. In this paper,
all conclusions are based only immunofluorescent quan-
titation of target gene down regulation following transient
antisense CFIR in utero .

Cystic fibrosis is a pleiotropic disease. The seemingly
unrelated phenotypic effects of CFIR are largely unex-
plained by the hypothesis that CF pathology results from
the lack of continuous chloride channel expression.
Beginning with the reversal of the CF knockout mouse
phenotype with transient in utero cftr gene therapy using a
recombinant adenovirus [9], this laboratory proposed
that CF was also a disease of secretory cell differentiation
and that the protein's many functions, including that of a
chloride channel, were required for multipotential cell
differentiation. Results supporting this hypothesis were
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Western analysis of MRP 8 (CF Antigen) expressions
in rat lungs following in utero antisense cftr therapy.
Western blots were performed on protein (20 pg) from
lungs using MRP8 or actin specific antibodies. Protein was
extracted from either AdCMVgfp (control) or fetuses (n = 6)
treated at |6 days gestation with AACMVAScftr (n = 6) and
fetal rat lungs harvested at 18-20 days gestation

obtained in mice, rats and non-human primates. Thus,
some of the altered functions observed in CF tissues are
due to incomplete development and malfunctioning
secretory cells.

As shown recently [5], CFIR is highly expressed in the
lung during the pseudoglandular phase of development
and begins to decline during the cannalicular phase of
development where it remains low at birth. This early
phase of lung development correlates with that used for in
utero gene therapy and reversal of the knockout mouse
phenotype [5,13]. These data also suggested that the tran-
sient, selective, inhibition of CFIR expression should
recapitulate the human CF phenotype without species-
specific compensatory mechanisms interference. The
development of the TIUKO method permitted such
experiments.

The selective, transient CFTR expression inhibition in a
small number (<107) of undifferentiated multipotential
cells was performed in using a recombinant adenovirus
with a cftr fragment cloned in the 3'-5', antisense,
direction. As shown in immunohistochemical examina-
tions of lung tissues (Figure 1, 2), specific inhibition of
CFTIR expression occurred to the extent of that obtained
previously with antisense c-myc [17].

http://www.biomedcentral.com/1471-213X/5/2

In the lungs of TIUKO CF rats, significant changes in lung
structure were not readily apparent at birth. As the ani-
mals aged, however, airway thickening and fibrosis were
found morphologically. Changes in the airways were con-
firmed with morphometric analysis (Fig. 3, 4; Table 1)
and pulmonary function tests (Fig 7). Thus, the TTUKO CF
rats reproduced many aspects seen in lung disease of
human.

Elevated serum levels of MRP8 were used to identify CF
affected individuals and heterozygous carriers prior to the
cloning of the cftr gene. The gene for the cystic fibrosis
antigen (MRP8) was cloned in 1987 by Dorin et al. [20].
Because intermediate levels of the protein were expressed
in clinically unaffected heterozygotes it was hypothesized
at that time that its expression was closely related to the
basic defect of cystic fibrosis. Work on this protein lost
momentum when the cftr gene was cloned and confirmed
to be a chloride channel and also when MRP 8 expression
was not found in the preliminary survey of adult and fetal
CF lung [26]. Because MRP8/14 is highly expressed in pol-
ymorphonuclear leukocytes, the high levels of MRP8/14
in CF patients were explained as a result of inflammation
rather than a potential source of it. In addition to elevated
levels of MRP8/14 protein in human CF serum, mRNA
expression has been found in tracheal gland cells
obtained from normal and cystic fibrosis patients. A sig-
nificant increase in these mRNAs was shown in the cells of
CF origin [27]. The increased expression of this protein in
the fetal lung following antisense cftr gene transfer (Fig. 6)
is consistent with human CF and the knockout mouse.

Reversal of the CF phenotype by in utero gene therapy and
the developmental changes following CFTR over
expression studies in mice, rats, and non-human primates
are consistent with a developmental paradigm for this
disease. As summarized in Table 2, the TIUKO CF rats
demonstrate that faulty differentiation of secretory cell
may be associated with many of the features of the CF
lung disease phenotype [28].

Several recent papers illustrate the potential role of the
developmental requirement of CFTR in CF pathophysiol-
ogy and lung growth Groman and co-workers [29] found
a subset of patients with the CF phenotype and no
mutation in the cftr coding sequence. This finding is con-
sistent with the role in CF of other genes in a common
secretory cell pathway that includes cftr as only one of
many components. In addition, transplant of human fetal
CF lung tissues into SCID mice resulted in lung inflamma-
tion [30]. These data are consistent with our prenatal ele-
vation of the MRP8/14 (Figure 6) and suggest that
developmental interference with secretory cell differentia-
tion results in a constitutive inflammatory response.
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Airway reactivity in AACMVASCcftr-treated rats. Fetuses at 16 days gestation were treated with either AdCMVlacZ
(black; n = 5) or AACMVAScftr (red; n = 5). Animals were maintained in filtered cages to minimize exposure to environmental
pathogens. At 6—12 months of age, changes in airway resistance (Raw) were determined in response to nebulized saline and
acetylmethylcholine at concentrations of 3.125, 12.5, and 50 mg/ml.

Until recently, no distinctive changes in lung structure and
function were found in the CFIR knockout mouse.
However, recent evaluation by our laboratory of lung
function in cftr+/+, cftr+/-, and cftr-/- mice, showed distinct
phenotypes for each genotype [31]. Thus, normal lung

development in mouse is affected in a dose response
manner by CFTR. The TIUKO rat is distinct genetically
from a heterozygous animal. In heterozygous animals,
one maintains a single functional copy of the transgene in
all multipotential, undifferentiated cells of the developing
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Table 2: Comparison of cystic fibrosis disease phenotypes between human and animal models

HUMAN DISEASE PHENOTYPE

CFTR KNOCKOUT MOUSE MODEL

TIUKO CF RAT PHENOTYPE

PHENOTYPE

LUNG FIBROSIS

MRP8/14 ELEVATED
AIRWAY REACTIVITY
CHRONIC INFLAMMATION

NOT DETECTED

FIBROSIS AND INFLAMMATION
DETECTED IN G551D MOUSE

DETECTED IN CONGENIC MICE

PRESENT BY 100 DAYS OF AGE
INCREASED PRENATALLY
INCREASED WITH AGE
PRESENT BY 100 DAYS OF AGE

fetal lung. So in the mature, heterozygous lung altered
pulmonary function but normal structure is observed. In
contrast, in the TIUKO CF fetal lung, multipotential,
undifferentiated cells infected with the antisense gene
have a total deficiency of CFIR (Fig 1). The developing
TIUKO CF rat lung is a mosaic of normal (cftr+/+) and
CFTR deficient (essentially cftr-/-). Thus, as shown in this
paper, the TUIKO CF rat exhibited a CF-related phenotype
while a CFIR heterozygous does not show any CF
features.

We propose that CFTR is part of a developmental cascade
for secretory cells in the lung, intestines, pancreas and
other secretory organs (Fig. 8A). Disruption of this path-
way could occur by either a cftr mutation, or as suggested
by Groman et al's [29] work, other mutations of genes in
this cascade. This would lead to incomplete differentia-
tion of secretory cells and loss of function (Fig. 8B). In
addition, the failure of secretory cell differentiation leads
to a constitutive expression of cytokines that function in
development as agents of differentiation. Once the
immune system matures postnatally, however, these same
cytokines assume a proinflammatory role, leading to
chronic inflammation and fibrosis. The TIUKO CF rats
may be used to identify these other genes involved in
human lung epithelial cell differentiation and diseases
resulting from their dysfunction. Finally, the TIUKO CF
rat provides an animal model for the development of
pharmacologic agents to disrupt the constitutional
inflammatory processes in the CF affected tissues.

Conclusions

Transient inhibition of CFIR expression in the lungs
results in many features of cystic fibrosis in the mature
animal. Increased fibrosis, chronic inflammation,
increased airway reactivity, and elevation of CF antigen
were observed. These data are consistent with a CFTR
requirement for normal lung development.

Methods

Recombinant adenoviruses

A 920 bp human CFIR cDNA that included exons 1-6
(ATCC 61123; [18]) was gel-purified and subsequently
subcloned into the plasmid pShuttle-CMV (Quantum

Biotechnologies, Montreal, Canada). Recombinant aden-
oviruses were generated by homologous recombination
in the E. coli strain BJ5183, according to the protocol of He
et al [32]. Recombinants were confirmed for overall size
by restriction endonuclease digestion and propagated in
DHb5a. Linear recombinant adenoviral DNA was used to
transfect 911 packaging cells by Ca2PO4 precipitation to
produce the virus AACMVAScftr. Recombinant adenovi-
ruses with the lacZ (AdCMVlacZ) and green fluorescent
protein (GFP; AdCMVgfp) were provided by Dr. J. Kolls
(LSHHSC, New Orleans, LA). All viruses were CsCl or
HPLC purified.

In utero gene transfer

Timed pregnant Sprague-Dawley Rats were induced (5%)
and sedated (2%) with inhaled Isoflurane. A laparotomy
was performed exposing the uterine horns. The individual
amniotic sacs of the fetuses were visualized and injected
with fine gauge needle containing adenoviral particles in
10% of the amniotic fluid volume. The recombinant ade-
noviruses in Dulbecco's Minimal Essential Medium deliv-
ered final concentrations of 108 pfu/ml to the amniotic
fluid.

Histochemistry and morphometry

At the time of sacrifice all animals received a number. This
code was used for identification of all histologic and bio-
chemical studies.

All tissues were fixed in methanol-free, 4% buffered para-
formaldehyde and either mounted in paraffin or OCT for
sectioning. Fluorescent immunohistochemistry was per-
formed with goat polyclonal IgG (Santa Cruz) specific for
CFIR carboxy (sc-8911) and amino terminal (sc-8909)
sequences. Secondary donkey anti-goat ALEXA (Molecu-
lar Probes) antibodies were used. All tissues were visual-
ized on a deconvoluting, Lieca, light microscope.
Hematoxylin and eosin stain and Masson's Trichrome
stain were performed with kits (Sigma Chemical Co) and
tissues examined by standard light microscopy.

Morphometry was performed with the identification
numbers and treatment groups unidentified by two
blinded investigators. Airway thickness was determined
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Figure 8

Developmental Paradigm for Cystic Fibrosis Lung Fibrosis Based on TIUKO CF Rat and Developmental Stud-
ies in Mice, Rats, and Non-human Primates. In Panel A CFTR is shown as one member of a developmental cascade
required for normal secretory epithelium development. Included in this pathway are other cytokines, possibly MRP8/14. In
normal development in the presence of CFTR feedback mechanisms either completely inhibit or at least decrease the expres-
sion of these developmentally active cytokines. In the absence of CFTR, Panel B, the secretory epithelium fails to differentiate
properly. Failed development leads to an immature epithelium that does not exhibit the feedback function necessary for inhibi-
tion of developmentally required cytokines. Expression of these cytokines in the permanent, developmental immature, CF lung
leads to activation of inflammatory cells once the immune system matures post-natal. Constitutive, chronic inflammation would
explain the lung fibrosis and inflammatory disease seen in CF patients

following staining with hematoxylin and eosin in 100 day ~ corresponding segment of sub epithelial basement mem-
old rats. The area of the wall between the sub epithelial  brane was digitized and used as a reference length to
basement membrane and parenchymal epithelium was  normalize airway wall area [21]. Quantitation was per-
digitized excluding airway epithelium and cartilage. The = formed using Scion Image [13,14].
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Image analysis based morphometry was performed with
the identification numbers and treatment groups uniden-
tified. Morphometric analysis was performed by two
blinded investigators. Digitalized images were analyzed
for airway thickness using Scion Image [13,14] or for col-
lagen using PHOTOSHOP imaging software [22,33].
Deconvoluting microscopy and image analysis was per-
formed on a Lieca inverted microscope with Xenon light
source and SLIDEBOOK imaging software.

Western blots

Polyacrylamide gel electrophoresis was performed on
18% Tris-HCl gels (Biorad) and transferred to PVDF mem-
branes (Amersham) [34,35]. Polyclonal antibodies to
MRPS8, MRP14, and actin (Santa Cruz) were used in the
concentrations of 1:1000 (all antibodies). The secondary
HRP-labeled anti-goat antibody (Santa Cruz) was incu-
bated at a concentration of 1:8000. Detection was per-
formed using ECL-plus (Amersham).

Pulmonary function tests

Rats at 12-14 months of age were anesthetized with intra-
peritoneal pentobarbital (90 mg/kg), and the trachea was
dissected free of surrounding tissue and cannulated with a
20-gauge cannula. The rat was then connected to a small
animal ventilator (flexiVent, SCIREQ Inc. Montreal, PQ,
Canada) and ventilated with a tidal volume (V,) of 10 ml/
kg; inspiratory:expiratory ratio (I:E) of 66.67%, respira-
tory rate of 150 breaths/minute, and maximum pressure
of 30 cmH,0. Positive end-expiratory pressure (PEEP) was
controlled by submerging the expiratory limb from the
ventilator into a water trap. Each animal was paralyzed
with pancuronium bromide (0.5 mg/kg) and allowed to
equilibrate on the ventilator until spontaneous breathing
ceased (5 minutes). Zrs measurements at a PEEP level of
3. Data were statistically evaluated using paired t-test.

Respiratory mechanics

To measure the input impedance of the respiratory system
(Zrs), mechanical ventilation was interrupted and the
animal was allowed to expire against the set level of PEEP
for 1 s. We then applied an 8 second broad-band volume
perturbation signal was then applied to the lungs with the
flexiVent, after which ventilated was resumed. A PEEP of 3
cmH,O was used. The volume perturbation signal con-
sisted of the superposition of 18 sine waves having fre-
quency spaced roughly evenly over the range 0.25 Hz to
19.625 Hz. Zrs was calculated from the displacement of
the ventilator's piston and the pressure in its cylinder as
described previously [36,37]. Correction for gas com-
pressibility as well as resistive and accelerative losses in
the flexiVent, connecting tubing and the tracheal cannula
were performed as described previously [38]using
dynamic calibration data obtained by applying volume
perturbations through the tubing and tracheal cannula

http://www.biomedcentral.com/1471-213X/5/2

first when it was completely closed and then when it was
open to the atmosphere.

We interpreted the measurement of Zrs in terms of the
constant phase model [39]

G—-iH

(2mf)*
where Raw is a frequency independent Newtonian resist-
ance reflecting that of the conducting airways [40], law is
airway gas inertance, G characterizes tissue damping, H
characterizes tissue stiffness (elastance), i is the imaginary
unit, @ links G and H, and f is frequency. We also calcu-
lated a quantity known as hysteresivity (7 = G/H), which
is believed to increase when regional heterogeneities
develop in the lung [41].

Zrs(f) = Raw + i2x flaw +

Acetylmethylcholine challenge

After rats were equilibrated on the respiratory, sequential
30 second challenges with nebulized physiologic saline,
3.125, 12.5 and 50 mg/ml acetylmethylcholine dissolved
in physiologic saline were performed. Between each chal-
lenge, 18 broad-band volume perturbations were pro-
duced by the ventilator at 10 second intervals between
each perturbation. Raw was calculated for each
perturbation.

Abbreviations
CFTR - Cystic fibrosis transmembrane conductance regu-
lator; CF - cystic fibrosis
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