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Abstract

many IVD markers including Fmod and Adamtsl2.

development.

Background: Very little is known about how intervertebral disc (IVD) is formed or maintained. Members of the
TGF-B superfamily are secreted signaling proteins that regulate many aspects of development including cellular
differentiation. We recently showed that deletion of Tgfbr2 in Col2a expressing mouse tissue results in alterations in
development of IVD annulus fibrosus. The results suggested TGF- has an important role in regulating
development of the axial skeleton, however, the mechanistic basis of TGF action in these specialized joints is not
known. One of the hurdles to understanding development of IVD is a lack of known markers. To identify genes
that are enriched in the developing mouse IVD and to begin to understand the mechanism of TGF-8 action in IVD
development, we undertook a global analysis of gene expression comparing gene expression profiles in
developing mouse vertebrae and IVD. We also compared expression profiles in tissues from wild type and Tgfbr2
mutant mice as well as in sclerotome cultures treated with TGF-§ or BMP4.

Results: Lists of IVD and vertebrae enriched genes were generated. Expression patterns for several genes were
verified either through in situ hybridization or literature/database searches resulting in a list of genes that can be
used as markers of IVD. Cluster analysis using genes listed under the Gene Ontology terms multicellular organism
development and pattern specification indicated that mutant IVD more closely resembled vertebrae than wild type
IVD. We also generated lists of genes regulated by TGF-§ or BMP4 in cultured sclerotome. As expected, treatment
with BMP4 resulted in up-regulation of cartilage marker genes including Acan, Sox 5, Sox6, and Sox9. In contrast,
treatment with TGF1 did not regulate expression of cartilage markers but instead resulted in up-regulation of

Conclusions: We propose TGF-8 has two functions in IVD development: 1) to prevent chondrocyte differentiation
in the presumptive IVD and 2) to promote differentiation of annulus fibrosus from sclerotome. We have identified
genes that are enriched in the IVD and regulated by TGF-f that warrant further investigation as regulators of IVD

Background

The vertebral column develops from somites (Reviewed
in [1-3]. In response to signals from the notochord and
floor plate of the neural tube, the maturing somites will
undergo a dorsal-ventral compartmentalization estab-
lishing the dermamyotome and sclerotome, the latter
forming the future axial skeleton. The ventral part of
the sclerotome gives rise to the vertebral bodies and
IVD [4]. Due to resegmentation of sclerotome during
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the formation of the vertebrae, each vertebrae will even-
tually form from the caudal portion of one somite and
the rostral portion of the adjacent somite [5]. The IVD
will form at the border of the rostral and caudal
domains [6]. IVD are derived from both sclerotome and
notochord [7-9]. The outer layer of the IVD, the annu-
lus fibrosus (AF) is derived from sclerotome and pro-
vides the structural properties of the IVD. As the
vertebral bodies undergo chondrogenesis, notochord
cells are removed from the vertebral region and expand
into the IVD region to initially form the nucleus pulpo-
sus (NP), the central portion of the IVD [10]. TGF-B3 is
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one of the earliest markers of the developing IVD within
the sclerotome [11,12].

Members of the TGF-f superfamily are secreted sig-
naling molecules that regulate many aspects of cell phy-
siology (Reviewed in [13-15]. The family includes three
TGF-B isoforms (TGF-B1, 2, and 3), the Activins and
Inhibins, Growth and Differentiation Factors (GDFs),
and the Bone Morphogenetic Proteins (BMPs). TGF-fs
signal through heteromeric serine/threonine kinase
receptors. The current model is that TGF-B binds to the
TGEF-B type II receptor (Tgtbr2) on the cell surface [16].
Tgfbr2 is then able to recruit the type I receptor
(Tgfbrl) to form a heterotetrameric complex. Tgfbr2
which is a constitutively active kinase, phosphorylates
the type I receptor, activating the type I serine/threonine
kinase. Downstream targets of Tgfbrl then transduce
the signal to the nucleus.

All three isoforms of TGF-B are expressed in the
developing mouse axial skeleton in distinct and overlap-
ping patterns [11,12,17,18]. Tgfbl mRNA is localized to
intersegmental cells at E12.5 days. By E16.5 days, Tgftbl
mRNA is localized to the ossification centers and peri-
chondrium of vertebrae. At E12.5 days, Tgfb2 mRNA is
expressed in all prevertebral segments with the highest
levels of expression in the thoracic sclerotome. Tgfb3
mRNA is also expressed in all prevertebral segments
marking the location of the future IVD and later becom-
ing restricted to the perichondrium and outer AF of the
IVD [11,12]. A systematic study of the expression pat-
tern of the TGF-B receptors during mouse vertebral
development has not been reported; however, expression
has been detected in the somite and IVD [18-21].
Tgfbr2 is expressed in the adult AF. A decrease in
expression is correlated with aging and degeneration of
the IVD [22].

The role and necessity of members of the TGF-
superfamily in specific aspects of spinal development
and pathology is most clearly illustrated in mice and
humans with mutations or targeted deletions in their
respective genes [23,24]. Previously, we showed that
deletion of Tgfbr2 in Col2a expressing sclerotome
resulted in defects in development of the vertebrae and
the IVD [25,26]. Specifically, alterations in the AF were
detected. The boundary between the IVD and vertebral
body was not clearly demarcated and Fibromodulin
(Fmod) expression was reduced while expression of
Type II collagen splice variant B (Col2; [27]) and stain-
ing with peanut agglutinin were increased. The results
suggested that TGF-f was required to promote and/or
maintain the IVD during development. TGF-f also
appears to have a role in maintaining the adult IVD.
Polymorphisms within the human Tgfbl gene have a
weak but significant association with Ankylosing Spon-
dylitis and the T29C polymorphism in the Tgfbl gene is
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associated with the genetic susceptibility to Spinal
Osteophytosis [28,29]. Furthermore, a functional SNP in
Cartilage Intermediate Layer Protein (CLIP) is associated
with lumbar disc disease. CLIP was shown to co-localize
with TGE-B in the IVD and the susceptibility-associated
allele showed increased binding to TGF-f and inhibited
TGE-B signaling [30].

Very little is known about the molecular mechanisms
that govern development of the IVD. One of the barriers
to understanding how the IVD develops is a lack of
markers to distinguish developing IVD from the carti-
lage of the vertebrae. In this study, we used laser micro-
dissection and microarray technology to identify genes
whose expression was enriched in the developing IVD
relative to the adjacent vertebrae. We then used cluster-
ing analysis of gene expression profiles in mutant and
control vertebrae and IVD to show that in the absence
of Tgfbr2, IVD molecularly starts to resemble vertebrae.
We then show that treatment of sclerotome with TGF-f
results in up-regulation of many IVD enriched genes.
Together the data suggest that TGF-f prevents chon-
drocyte differentiation in the presumptive IVD and pro-
motes differentiation of the AF from sclerotome.

Results

Identification of IVD enriched genes

To identify genes that are enriched in the presumptive
IVD relative to the presumptive vertebral body, we used
laser capture microdissection followed by microarray
analysis. RNA was collected from IVD and vertebrae
that were microdissected from the lumbar region of
E13.5 day mouse embryos (Figure 1). At this stage, we
could just begin to distinguish the presumptive IVD
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Figure 1 Laser Microdissection. Laser Capture Microdissection
(LCM) was carried out using a Zeiss/PALM Microbeam Instrument.
Lumbar region IVD (D, shown) and vertebrae (V) were
microdissected from frozen sections of E13.5 day embryos. (A)
shows before and (B) shows after microdissection of IVD. The green
circles show the area that was designated for laser cutting.
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from the adjacent developing cartilage. In addition, the
notochord was just beginning to expand into the pre-
sumptive IVD region. Microscopically, IVD samples that
were collected contained primarily presumptive AF tis-
sue with only a small amount of notochord/NP. Tissue
was microdissected from several separate Cre-negative
and Cre+Tgfbr2'"*!*” embryos. After isolation and
quality control testing of the RNA we had 3 biological
replicates from Cre-negative IVD and vertebrae and
Tgfbr2 mutant vertebrae. We had four biological repli-
cates of Tgfbr2 mutant IVD. Each sample was amplified
and labelled separately then hybridized to Affymetrix
Mouse 430 2.0 GeneChip Arrays (13 arrays total).

Lists of presumptive IVD and vertebrae-enriched
genes were generated by comparing gene expression in
wild type (Cre-negative) IVD and vertebrae (Table 1 and
additional file 1: supplemental table S1 and additional
file 2: supplemental table S2). A total of 263 genes were
found enriched in the IVD (additional file 1: supplemen-
tal table S1), that is, after normalization and application
of statistical cut offs (ANOVA p < 0.05), expression of
these genes was 2-fold higher in the IVD than in the
vertebrae. One hundred and forty one vertebrae
enriched genes were identified (additional file 2: supple-
mental table S2). Genes whose preferential expression in
the IVD was verified either by literature/database search
or in situ hybridization (Figure 2) are shown in Table 1.
The gene expression databases searched were the Gene
Expression Database (GXD) at Mouse Genome Infor-
matics (MGI; http://www.informatics.jax.org) and the
Genepaint database (http://www.genepaint.org; [31]. In
situ hybridization of Nfatcl, an IVD enriched gene, and
Ebfl1, a vertebrae enriched gene, are shown in Figure 2.
Table 1 thus provides a list of a number of genes that
can be used as markers to distinguish developing IVD
from vertebrae. The genes include those involved in reg-
ulation of the cytoskeleton, extracellular matrix and
adhesion, growth factors and regulators of growth factor
function, signal transduction, and regulation of tran-
scription. As expected, Tgfb3, was identified in this
screen as an IVD enriched gene [11,12].

Effects of losing Tgfbr2 on IVD development

Previously, we generated mice in which Tgfbr2 was
deleted using Cre expressed under the control of the
Col2a promoter. The mice had defects in development
of the IVD [25,26]. Specifically, the expression of Fmod,
an IVD marker, was reduced and expression of cartilage
markers was increased suggesting one of the roles of
Tgtbr2 is to prevent chondrocyte differentiation in the
AF of the presumptive IVD. Here, we used microarray
analysis to compare molecular profiles of normal and
mutant IVD to see if we could confirm and extend the
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Table 1 IVD enriched, verified genes.
Probe Set ID Gene Symbol Fold Difference Reference
Cytoskeleton
1434326_x_at Coro2b 3.58 [31]
1456312_x_at Gsn 2.08 [31]
Extracellular matrix and adhesion
1429214 _at Adamts|2 245 [66]
1448590_at Col6al 4.57 [31]
1452250_a_at Coléa2 3.77 [31]
1426947 _x_at 411
1424131 _at Col6a3 404 [31]
1427168 _a_at Col14a1 2.84 [67]
1428455_at 2.85
1436965_at Emilin3 3.60 [68]
1416164 _at FbIn5 279 [69]
1450728 _at Fix1 2.2 [70]
1415939 _at Frmod 272 [42]
1437324 _x_at 246
1437685_x_at 2.32
1437718_x_at 235
1434210_s_at  Lrig1 355 31]
1449893_a_at 4.85
1421694 _a_at Vcan 245 [71]
1427256_at 235
1433043_at 2.09
Growth factors and regulators
1448421 _s_at Aspn 8.75 [72]
1416652_at 6.04
1449545_at Fof18 25 [73]
1419139 _at Gdf5 845 [74]
1422053_at Inhba 429 [75]
1417455_at Tgfb3 263 [11]
1425425_a_at Wif1 7.82 [31]
1448594 _at Wisp1 255 31]
1448593_at 2.81
Signal transduction
1434034 _at Cerk 2.03 [31]
1448830_at Dusp1 3.57 [31]
Transcription factors
1433939_at Aff3 2.20 [76]
1440244 _at Erg 291 [58]
1437247 _at Fosl2 6.34 [31]
1434939_at Foxfla 201 [77]
1418220_at Foxf2 3.04 [77]
1417621 _at Nfatc1 3.04 Figure 2
1428479_at 4.00
1449359_at Pax1 3.04 [4]
1421246_at Pax9 2.32 [4]
1434286_at Trpsi 3.87 [78]

1438214 _at 246
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Figure 2 Verification of localization by in situ hybridization. (A)
A digoxigenin labelled probe to Nfatc1 was hybridized to sections
from E12.5 day embryos. Hybridization was visualized as purple
staining. Nfatc1 was clearly expressed in the IVD (D, arrow) at this
stage. (B) A digoxigenin labelled probe to Ebfal was hybridized to
sections from E12.5 day embryos. Expression was not detected in
the IVD (D) but light purple staining was seen in the vertebral body
(V). Staining was also seen in the neural tube (NT) and adjacent
blood vessels.

previous findings. Two hundred and eleven genes were
found to be either up-regulated or down-regulated in
the E13.5 presumptive IVD after deletion of Tgfbr2
(additional file 3: supplemental table S3). Several of the
IVD markers that were identified in Table 1 and addi-
tional file 1: supplemental table S1 were down-regulated
in the mutant IVD relative to the controls (Table 2).
Likewise, several genes normally enriched in the verteb-
rae (additional file 2: supplemental table S2) were up-
regulated in the Tgfbr2-mutant IVD (Table 3). We con-
firmed the previous results showing down-regulation of
Fmod in the mutant IVD and extended this finding to
show down-regulation of other ECM IVD enriched
genes including Col6 and Col14. Asporin (Asp), which
has been associated with lumbar disc disease in humans
[32], was down-regulated in mutant IVD. Trpsl, a tran-
scription factor associated with the skeletal defects of
Trichorhinophalangeal Syndrome [33], was also down-
regulated in mutant IVD.

A more global analysis of differences in normal and
mutant IVD was provided by Gene Ontology (GO)

Table 2 Selected IVD enriched genes that are down-
regulated in the IVD by deletion of Tgfbr2.

Arhgap24 Col14a Fmod Hhip Trps1
Asp D18Ertd653e GDF5 Lsamp Wif1
Col6al Erg Gnal4 Ogn

Table 3 Selected vertebrae enriched genes that are up-
regulated in Tgfbr2-deleted IVD.

Alcam Dtna Pcdh17
Asb4 Ebf1 Pik3r1
Bmper Pcdh9 Prkg2
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Analysis and hierarchical cluster analysis. First GO ana-
lysis indicated that mutations in Tgfbr2 resulted in sig-
nificant alterations in the IVD in genes associated with
development of multicellular organisms, which also
included a subset of genes associated with limb develop-
ment. There are no specific GO terms to define devel-
opment in the axial skeleton. Genes associated with
patterning and cell adhesion were also altered. Hierarch-
ical clustering was used to sort three lists of genes with
the GO terms multicellular organism development, pat-
tern specification, and cell adhesion (Figure 3). This
analysis clusters conditions that are molecularly most
similar together. When genes under the general term of
multicellular organism development were used for the
cluster analysis, wild type and mutant vertebrae sorted
closest together indicating that overall they were mole-
cularly very similar. Mutant IVD clustered closer to the
vertebrae samples (Figure 3A). Similar results were
obtained for genes under the GO term pattern specifica-
tion (Figure 3B). In contrast, if the experiment was clus-
tered based on cell adhesion related genes, both IVD
and vertebrae were affected so that wild type and
mutant IVD did not cluster together and wild type and
mutant vertebrae did not cluster together either (Figure
3C). The results support the model in which develop-
ment and patterning is altered in Tgfbr2-mutant IVD so
that it more closely resembles vertebrae than normal
IVD.

TGF-f treated sclerotome preferentially expresses IVD
enriched genes

Next, we wanted to find genes that were potentially
directly regulated by TGF-B in sclerotome and deter-
mine if TGF-B treated sclerotome acquired characteris-
tics of IVD. To this end, we set up micromass cultures
of sclerotome cells dissected from E11.5 day wild type
embryos (Figure 4A). This culture system is similar to
that commonly used for embryonic limb mesenchyme
[34,35]. To determine if there was contamination from
other cell layers, for example the myotome, we isolated
RNA from the freshly dissected sclerotome as well as
the notochord, and neural tube that were left after the
dissection. Marker gene expression was used to deter-
mine the quality of the dissection (Figure 4B). Pax1 is
expressed in sclerotome [4], Pax3 is expressed in the
myotome and in the dorsal neural tube [36], and bra-
chyury (T) is expressed in the notochord [37]. In the
sclerotome sample, Pax1 was expressed at a high level,
as expected. There was little to no expression of Pax3
indicating very little myotome or neural tube contami-
nation in the dissected tissue. The very low level of
expression of Pax1 in the notochord and neural tube
samples indicates that a small amount of sclerotome
was left behind during the dissection.
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Figure 3 Hierarchical clustering analysis. Hierarchical clustering using gene lists containing the GO term multicellular organism development
(A), patterning (B), or cell adhesion (C). Red indicates highly expressed genes relative to blue, which represents lower expression. When clustered
on the relevant gene lists, mutant IVD (Cre, Disc) clusters with mutant (Cre, Vertebrae) and control (WT, Vertebrae) vertebrae. The condition WT,
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Figure 4 Sclerotome culture. (A) Sclerotome was isolated from E11.5 day embyos and grown in micromass culture. (B) RT-PCR to show purity
of cultures. RNA was isolated from neural tube (NT), notochord (NC), and sclerotome (Sc) immediately after dissection. cDNA was made from
the RNA and expression of Pax1, a marker for sclerotome, Pax3, a marker for myotome and neural tube, and brachyury (T), a marker for the
notochord, were determined using PCR. 185 was used as a loading control. Pax1 was expressed in the sclerotome but T and Pax3 were not
detected indicating that there was no contamination with myotome, neural tube or notochord in the sclerotome preparation. (C) Alcian blue
stained micromass cultures 72 hours after treatment with BMP or TGF-B. Untreated (un) cultures are shown as a control. Very little alcian blue
stain was seen in untreated controls. Treatment with BMP resulted in a lot of darkly stained nodules with cartilage morphology. Treatment with
TGFB resulted in an increase in alcian blue stain but discreet nodules with cartilage morphology were not detected. (D) RT-PCR was used to
determine expression of Fmod in untreated (UN) and BMP or TGF-B treated cultures. Fmod was induced after treatment with TGF-f3.

Cultures were grown in absence of growth factors or
in the presence of 50 ng BMP4/ml or 5 ng TGF-f1/ml
After 72 hours in culture, cells were stained with alcian
blue (Figure 4C). Cells grown in the absence of growth
factors demonstrated a low number of alcian blue stained
nodules with similar morphology to the cartilage nodules
found in cultures of limb mesenchyme. As expected, treat-
ment with BMP4 resulted in an increase in the number of
Alcian blue stained nodules with cartilage morphology
[38-40]. Treatment with TGF-B resulted in a different
response. Alcian blue staining was present throughout the
entire culture but not in discreet nodules. Previously, it
was shown that C3H10T1/2 cells, immortalized mesench-
ymal cells, treated with TGF-B demonstrate a similar
response [41]. Furthermore, treatment with TGEF-§
resulted in increased levels of Fmod mRNA, a previously
known marker for IVD (Figure 4D; [42] and Table 1).

Since the TGF-f treated micromass cultures expressed
Fmod and did not demonstrate typical cartilage mor-
phology, we next used microarray analysis to test the
hypothesis that TGF-f could promote AF differentiation
from sclerotome cells. Sclerotome cultures were set up
and left untreated or treated with 5 ng TGF-f1/ml or
50 ng BMP4/ml for 8 hours at which time RNA was
extracted. The experiment was set up three separate
times so that we would have three biological replicates
of each condition. After quality control testing of the
RNA, each sample was amplified and labelled separately

then hybridized to Affymetrix Mouse 430 2.0 GeneChip
Arrays (9 arrays total).

Gene list for TGF-B regulated and BMP regulated
genes were generated (Table 4, 5, additional file 4: sup-
plemental table S4 and additional file 5: supplemental
table S5). After normalization and statistical analysis,
281 genes that were either 2 fold up- or down-regulated
by TGEF-$ were identified (additional file 4: supplemental
table S4). Four hundred and forty eight BMP regulated
genes were identified (additional file 5: supplemental
table S5). Many known cartilage markers including
Sox5, Sox6, Sox 9, and Aggrecan (Acan), were up-regu-
lated by BMP (Table 5). In contrast, TGF-f did not up-
regulate any of these known cartilage markers. Instead,
treatment with TGF-f up-regulated many genes that
were enriched in the developing IVD, including Fmod
and Adamtls2 (Table 4). It is also interesting to note
that many vertebrae enriched genes were down-regu-
lated by TGF-B including Maf, a protein known to inter-
act with Sox9 to regulate cartilage gene expression [43].
In addition, at least two tendon markers, Scx and Mkx,
were regulated by TGF-f. It was recently shown that
TGE-B is also required for normal tendon development
[44]. Semiquantitative RT-PCR (Figure 5) and real time
PCR (not shown) were used to verify regulation by
TGEF-B of a subset of genes. As seen in the array data,
TGE-B up-regulated Adamtsl2 as well as the transcrip-
tion factors Bhlhbe40, Erg, Mkx, Nfatcl, and Scx. TGF-
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Table 4 Selected genes regulated by TGF-f in micromass cultures 2-fold, p < 0.05.

Probe set ID Gene Symbol Fold Difference Direction Localization Reference
Extracellular matrix and adhesion

1439827 _at Adamts12 438 up VD Table 1
1450627 _at Ank 2.07 up VD [79]
1420569 _at Chad 6.24 up V (end plate) [31]
1457296_at Cilp 325 up VD [30]
1416164 _at FbIn5 247 up VD Table 1
1422733 _at Fjx1 255 VD Table 1
1450728_at 236 up

1438966_x_at Fmod 5.07 up VD Table 1
1456084 _x_at 5.01

1415939_at 523

1437324 _x_at 577

1437685_x_at 457

1437718_x_at 527

1434510_at Papss2 202 up [80]
1435603_at Sned1 6.04 down Table S2
Growth factors and regulators

1449545_at Fgf18 441 up VD Table 1
1421365_at Fst 220 up VD [75]
1438251_x_at Htral 3.06 up VD [81]
1421844 _at rap 223 up VD Table S1
1448593 _at Wisp1 242 up VD Table 1
1448594 _at 2.64

Signal transduction

1423422 _at Asb4 2.14 down \Y Table S2
1433919_at 2.26

Transcription factors

1418025_at Bhlhe40 242 up VD [82]
1416302_at Ebf1 247 down V Table S2
1416301 _a_at 2.06

1448293 _at 237

1440244 _at Erg 211 up VD Table 1
1456786_at Ldb2 232 down \% Table S2
1435828_at Maf 472 down \% [83]
1437473 _at 3.05

1447849 _s_at 423

1456060_at 4.26

1437492 _at Mkx 245 up IVD, Tendon [84]
1417621 _at Nfatc1 32 up VD Table 1
1428479 _at 271

1428983_at Scx 403 up Tendon [85]
Unknown function

1427182_s_at D18Ertd653e 3.15 up VD Table S1
1452343 _at 267

1441977 _at 9630023C0O9Rik 249 down V Table S2

IVD = intervertebral disc annulus, V = vertebral cartilage, Table S1 = additional file 1: supplemental table S1, Table S2 = additional file 2: supplemental table S2.
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Table 5 Selected genes regulated by BMP4 in micromass cultures 2-fold p < 0.05.

Probe set ID Gene Symbol Fold Difference Direction Localization Reference
Cytoskeleton

1434326_x_at Coro2b 246 down VD Table 1
Extracellular matrix and adhesion

1449827 _at Acan 371 up vV [71]
1424131 _at Col6a3 3.03 down VD Table 1
1421987_at Papss2 6.42 up \% (80]
1434510_at 933

1421989_s_at 7.30

Growth factors and regulators

1429273_at Bmper 2.70 up \Y Table S2
1449545 _at Fgf18 6.52 down VD Table 1
1419139_at Gdf5 243 down VD Table 1
1450704_at Ihh 4.80 up v (86]
1428853 _at Ptch1 2.15 up V (perichondrium) [31]
Transcription factors

1448601_s_at Msx1 2.89 up DM [87]
1423500_a_at Sox5 235 up vV [88]
1432189_a_at 2.02

1455535_at 212

1427677_a_at Sox6 223 up V [88]
1447655_x_at 217

1424950_at Sox9 3.36 up \% Table S2
1451538_at 2.89

DM = dorsal trunk mesenchyme, IVD = intervertebral disc annulus, V = vertebrae cartilage, Table S1 = additional file 1: supplemental table S1, Table S2 =

additional file 2: supplemental table S2.

B treatment resulted in down regulation of the tran-
scription factors Ebfl and Maf.

Scatterplot analysis was used to give a more global ana-
lysis of the molecular profile of TGF-B treated sclero-
tome (Figure 6). First, the list of TGF-f up-regulated
genes was superimposed on the experiments describing
differential expression of genes in the wild type IVD ver-
sus the wild type vertebrae (Figure 6A). In this plot,
genes preferentially expressed in the IVD are repre-
sented as dots below the center line, with high signifi-
cance of difference below the outer line. Overall the
genes that are up-regulated by TGF-B were skewed
toward expression in the IVD supporting the hypothesis
that TGF-B can promote IVD phenotype at the molecu-
lar level. Next, the list of genes that are preferentially
expressed in the IVD was superimposed on the experi-
ment describing genes that are regulated by TGF-$ in
sclerotome (Figure 6B). In this case, dots above the cen-
ter line represent genes that are up-regulated by TGF-$
and genes below the line are down-regulated by TGF-f3.
There were more genes in the IVD that were up-regu-
lated than down-regulated by TGF-B. In contrast, if the
list of genes that is preferentially expressed in the ver-
tebrae is superimposed on the experiment describing

genes that are regulated by TGF-B, genes that are
down-regulated by TGF-B predominate. Together the
results suggest that TGF-f supports differentiation of
IVD from sclerotome.

Discussion

In this study we used microarray analysis to begin to
address the mechanism of TGF-§ action in development
of the axial skeleton. First, we identified a list of IVD
enriched genes that can be used as markers to distinguish
developing IVD from the adjacent vertebrae. We also
identified a number of genes for which expression is
altered in control IVD versus Tgfbr2-deleted IVD. GO
analysis indicated that genes associated with development
of multicellular organisms, patterning, and adhesion were
altered by the loss of Tgfbr2 in the presumptive IVD.
Hierarchical clustering analysis indicated that at the
molecular level, Tgfbr2 mutant IVD more closely
resembled vertebrae than control IVD. The results sug-
gest that Tgfbr2 is required to prevent cartilage formation
in the presumptive IVD. We then showed that a number
of IVD enriched genes are up-regulated by TGF-f in cul-
tured sclerotome whereas vertebrae enriched genes
tended to be down-regulated by TGF-B. The results
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Figure 5 Verification of regulation of selected genes by TGF-§
using RT-PCR. Sclerotome was treated with TGF1 for 8 hours at
which time RNA was isolated, cDNA was made and
semiquantitative RT-PCR performed. Beta-2-microglobulin (b2 mg)
was used as a loading control. Product formation in the linear range
is shown.

suggest that TGF-B can also promote differentiation of
IVD (AF compartment) from sclerotome.

One outcome of the molecular profiling described
here is a list of genes that can be used as markers for
developing IVD. It was shown previously that Tgfb3 is
one of the earlier markers to denote where the future
IVD will form within the sclerotome [11,12]. In addi-
tion, we and others have previously used Fmod as a
marker for the developing IVD AF [25,42]. Both of
these known markers were identified as IVD enriched
genes in the screen described here. In addition, the list
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of markers can be expanded to include GDF5 and
Wnt9a, which are also expressed in the interzone of
developing synovial joints [45]. Furthermore, several dis-
ease-related genes were identified as enriched in the IVD.
These include Adamtsl2, Aspn, and Trpsl. Adamtsl2 is
associated with Geleophysic dysplasia (OMIM: #231050).
Patients with Geleophysic dysplasia present with a variety
of skeletal abnormalities. It was also recently shown that
Adamtsl2 regulates the bioavailabilty of TGF-§ resulting
in increased TGF-B activity in fibroblasts from Geleophy-
sic dysplasia patients [46]. Polymorphisms in Asp, like
Cilp, which is regulated by TGF-B, are associated with
Lumbar disc disease (OMIM: #603932). Both Aspn and
Clip are extracellular matrix proteins that bind to TGF-
and suppresses its activity [30]. The D14 allele of Aspn is
associated with both osteoarthritis and Lumbar disc dis-
ease and inhibits TGF-B activity to a greater extent than
other alleles [32,47]. Trichorhinophalangeal syndrome,
type I (OMIM: #190350) is caused by haploinsuffiency in
the transcription factor Trpsl. Patients have distinctive
craniofacial and skeletal abnormalities. It is not known
how Trpsl might regulate development in the axial skele-
ton [48].

Gene Ontology (GO) analysis of the genes that were
regulated in control versus mutant IVD allowed us to
determine biological processes that might be altered by
loss of Tgfbr2. Eleven GO terms were represented at a
significant level in the control versus mutant IVD gene
list. The 11 terms could be broadly divided into three
categories: multicellular organism development, pattern-
ing, and adhesion. Previously we showed that Tgfbr2 is
required for normal development of the IVD [25,26].
Using Paxl and Pax9 as markers of rostral-caudal pat-
terning within the sclerotome we also showed that this
patterning was disrupted in Tgfbr2 mutant mice [25].
The list of patterning genes altered by loss of Tgfbr2 is
extended in this analysis. We did not previously address
alterations in adhesion due to loss of Tgfbr2 in the axial
skeleton. The profiling presented here suggests that this
would be a logical avenue for future experiments to
understand the mechanism of Tgfbr2 action in the
development of the axial skeleton and specifically in
development of the IVD.

Hierarchical clustering analysis using a list of genes
broadly associated with development indicated that by
E13.5 days at the molecular level, mutant IVD more clo-
sely resembled vertebrae than control IVD. We pre-
viously showed that cartilage fills the presumptive IVD
space in mutant mice by E14.5 days suggesting that one
of the roles of TGF-f in the axial skeleton is to prevent
chondrogenic differentiation in the presumptive IVD
[25,26]. More recently, we showed that Tgfbr2 also acts
to limit chondrogenesis in limb mesenchyme grown in
micromass culture [35]. Limb mesenchyme from mice
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[WT, Vertebrae]
[tgfb]

[tafb]

[WT, Disc]

inhibited by TGF-B.

[untreated]

Figure 6 Scatter plot analysis. (A) The list of genes that were up-regulated 2-fold by TGF§ was superimposed on the experiment describing
differences in wild type vertebrae (WT, vertebrae) and wild type IVD (WT, disc). The dots representing TGF§ genes are preferentially expressed
in the IVD. (B) The list of IVD enriched genes was superimposed on the experiment describing genes in cultured sclerotome that were regulated
by treatment with TGF-8. The dots representing IVD enriched genes are weighted toward being up-regulated by TGF-8. (C) The list of vertebrae
enriched genes was superimposed on the experiments describing genes regulated by TGF-B. Vertebrae enriched genes were more likely to be

[untreated]

with targeted deletion of Tgfbr2 via Prx1-Cre recombi-
nation grown in micromass culture consistently demon-
strated an increase in the number of cartilage nodules
with increased levels of Alcian blue staining relative to
untreated cells from control limbs suggesting TGF-f limits
the formation of cartilage from mesenchymal cells. The
Prx1Cre; Tgfbr2'*'°* mice also demonstrated a failure to
maintain the interzone during development of the joints
in the digits. The presumptive interzone was replaced with
cartilage resulting in fusion of the synovial joints in the
digits. Overall, the data suggest that TGF-B is anti-chon-
drogenic in limb and sclerotome mesenchyme, allowing
development of the synovial and axial joints. The early
development of the growth plate of the long bones and
vertebral bodies was surprisingly normal in these mice
suggesting TGF-B is not required for early development of
these structures as previously suspected [25,35]. The
effects of TGF-B on mature permanent cartilages, like the
articular cartilage, are distinct in that TGF-p appears to
maintain the cartilage phenotype and prevent hypertrophic
differentiation in these tissues [49-52]. It is known that the
response of a cell to TGF-B is dependent on its differentia-
tion status [53].

To identify genes that are potentially involved in the
anti-chondrogenic activity of TGF-, we can compare
the lists of vertebrae enriched genes, genes that are up-
regulated in the IVD by loss of Tgbr2 in vivo and genes
that are directly down- regulated by TGF-§ in sclero-
tome grown in culture. For example, one transcription
factor, Ebfl, meets all three of these criteria. Here we
showed using in situ hybridization that Ebf1 is expressed
at a low level in the presumptive vertebrae as early as
E12.5 days. Nothing is known about the role of this

factor in development of the axial skeleton; however, it
was recently shown that Ebf1 is expressed in cells of the
osteoblast lineage and controls osteoblast differentiation
[54]. Ebfl-null mice are runted but have an increase in
the number of osteoblasts in the bone. We can propose
a testable model in which Ebf1 is expressed in the devel-
oping vertebrae and is normally down-regulated by
TGF-B in the IVD. In the absence of TGF-f3, Ebfl is up-
regulated in the IVD region promoting vertebral devel-
opment. Likewise, another transcription factor, Maf, is
down-regulated by TGF-f in cultured sclerotome and
up-regulated in mutant IVD relative to control IVD.
Maf was previously shown to cooperate with Sox9 to
regulate many cartilage-enriched genes [43]. It is possi-
ble that down-regulation of Maf by TGF-B is at least
partially responsible for its antichondrogenic activity.
Based on results from overlaying lists of genes that are
up-regulated by TGF-$ with genes that are enriched in
the IVD we propose that TGF-f can also promote for-
mation of IVD AF from sclerotome. Previous studies
have also shown that adult marrow stromal cells treated
with TGF- more closely resemble IVD than cartilage
based on the expression of a smaller set of molecular
markers [55]. More recently, it was suggested that TGF-
B can either promote cartilage differentiation or shift
mesenchymal cell differentiation from a chondrogenic to
a fibrous (or tendon) fate depending on the presence of
Tgifl and down-regulation of Sox9 [56]. Neither expres-
sion of Sox9 or Tgifl were affected by TGF-B in either
the cell culture or in vivo experiments performed here
suggesting additional modes of regulation exist. We can
generate hypotheses about how TGF-B promotes IVD
development by comparison of genes that are enriched
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in the IVD, down-regulated in the mutant IVD, and up-
regulated by TGF-B in culture. For example, the tran-
scription factor, Erg, meets all three criteria. It was pre-
viously shown that mouse Erg is preferentially expressed
in the developing interzone and in the presumptive IVD
[57,58]. Over-expression of Erg in mice using the Col2a
promoter resulted in a delay in hypertrophic differentia-
tion in the long bones. Furthermore, Tenascin C expres-
sion, a marker for articular cartilage, was expanded. It
was suggested that the function of Erg was to promote
the formation of permanent cartilage. The effects of Erg
in the axial skeleton were not addressed but we can pro-
pose a testable model in which TGF-f regulates expres-
sion of Erg, which in turn could promote formation of
the fibrocartilage of the IVD.

Conclusions

Based on the molecular profiling described here, we
propose that TGF-f has two functions in development
of the AF in the IVD: 1) to prevent chondrocyte differ-
entiation in the presumptive IVD space and 2) to pro-
mote differentiation of AF from sclerotome. We have
identified genes that are enriched in the IVD and regu-
lated by TGF-f that warrant further investigation as
important regulators of IVD development.

Methods

Mouse crosses

All mice in this study were maintained under the guide-
lines of the Institutional Animal Care and Use Commit-
tee of the University of Alabama at Birmingham. Mice
in which exon2 of Tgfbr2 was flanked with loxP sites
(Tgfbr2f/ f were obtained from Dr. H.L. Moses, Vander-
bilt University, Nashville, TN [59]. Tgferf/ f mice were
mated to transgenic mice that express Cre under the
control of the Col2a promoter (obtained from Jackson
Labs, ME;[60] to create mice in which Tgfbr2 was
deleted in sclerotome (Baffi et al 2004, 2006). The geno-
type of adult transgenic mice was determined by PCR
analysis of genomic DNA isolated from tail biopsies as
previously described [25,26]. Timed pregnancies were
set up by crossing Col2aCre;Tgfbr2'***/** mice to
Tgfbr2'o*P/1o*P mice. Noon on the day of the vaginal
plug was counted as E 0.5 day. Cre-negative mice were
used as controls and sometimes referred to as “wild
type”. Col2aCre;Tgfbr2'"**/1* mice were used as the
experimental group.

Laser Microdissection

E13.5 day control and mutant mouse embryos were
rinsed in DEPC treated PBS, embedded into OCT and
frozen for sectioning. Using a cryostat, 8-12 um sagittal
cut frozen sections were collected and placed on PALM
PEN-Membrane Slides (P.A.L.M. Microlaser
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Technologies GmbH, Bernried, Germany). The frozen
sections were then quickly dehydrated (70 to 100%
EtOH) and stored in Xylene prior to LCM. Laser Cap-
ture Microdissection (LCM) was carried out by using a
Zeiss/PALM Microbeam Instrument (Microdissection
System; Carl Zeiss Microimaging GmbH, Munchen,
Germany). The presumptive IVD from the lumbar
region (Figure 1) were collected into RNase/DNase free
special PALM AdhesiveCaps (P.A.L.M. Microlaser Tech-
nologies GmbH, Bernried, Germany). After IVDs were
collected, the adjacent presumptive vertebrae were col-
lected into a separate adhesive cap. Collected sample
tubes were stored at -80C until RNA was isolated. RNA
was isolated using Ambion RNAqueous - Micro Kit
(Austin, TX). The optional DNase treatment step was
included.

Sclerotome Micromass Culture

Sclerotome cultures were set up using a method similar
to that used for limb micromass cultures [34,35]. Briefly,
after removal of the notochord, sclerotome ventral to
the neural tube was isolated from E11.5 day mouse
embryos. Mesenchymal cells were dissociated into a sin-
gle cell suspension with incubation in 1 mg/ml collage-
nase D at 37°C for 30 minutes and reconstituted at a
density of 1 x 107 cells/ml. Twenty microliters of cell
suspension was dropped into each well of a 24 well
plate. After a pre-incubation time of 1 h at 37°C to
allow cells to attach, the cultures were then flooded
with F-12:DMEM (3:2) containing 10% FBS, 50 pg/ml
ascorbic acid, 10 mM f-glycerolphosphate, 2 mM gluta-
mine, antibiotics with or without 5 ng/ml of TGFB1 or
50 ng/ml BMP4 (R&D Systems). Cultures were incu-
bated at 37°C in CO, incubator. To stain with Alcian
blue, micromass cultures were rinsed with PBS and
fixed with 4% paraformaldehyde for 15 minutes at room
temperature at which time cells were incubated in
Alcian blue staining solution (75%-ethanol Alcian blue
solution: 0.1 M HCI = 4:1) at 37°C overnight. Cells were
then washed with 70% ethanol and photographed. RNA
was extracted from the cells in culture using the stan-
dard Trizol method [61]. RNA was Dnase treated and
then tested using RT-PCR to assure there was no DNA
contamination in the samples.

Affymetrix Microarrays

The Affymetrix Mouse 430 2.0 GeneChip Array was
completed in the Gene Expression Shared Facility
located in the Heflin Center for Genomic Sciences at
the University of Alabama, Birmingham. The quality of
each RNA sample was determined by analysis on the
2100 Agilent Bioanalyzer prior to RNA labeling.
Detailed genechip analysis procedures are presented in
the Manufacturer’s GeneChip Expression Technical
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Manual (Affymetrix). Briefly, 50 ng of total RNA from
each sample was used in a two cycle cDNA amplifica-
tion protocol using T7-linked oligo dT primers as per
the manufacturer’s instructions. After the first round of
cDNA synthesis an in vitro transcription step was uti-
lized to amplify the RNA following which a second
round of cDNA synthesis was performed. Subsequently,
cRNA was generated and biotin was incorporated into
the cRNA strand by standard methods (Affymetrix) fol-
lowed by ¢cRNA fragmentation, and preparation of
hybridization cocktail. The arrays were hybridized over-
night at 45°C, and then washed, stained, and scanned
the next day. Gene expression levels were extracted
using AGCC (Affymetrix GeneChip Command Console).

Microarray Analysis
Statistical analysis and gene lists for the array experi-
ments were generated using the software package Gene-
Springs (Agilent, Santa Clara, CA). Bioinformatics
analysis including scatterplots, clustering, Gene Ontol-
ogy (GO) and Gene Set Enrichment Analysis (GSEA),
were also performed using GeneSprings (Agilent, Santa
Clara, CA). Briefly, to generate gene lists, the raw Gene-
Chip files (.cel) from GeneChip Operating Software
(AGCC, Affymetrix, CA) were uploaded to Genesprings,
background was subtracted, and data was normalized
using the RMA method and default settings in Gene-
springs. The control or otherwise mentioned group was
used as a baseline to calculate the intensity ratio/fold
changes of the treated versus the control groups. The
ratio was log2-transformed before further statistical ana-
lysis. The p-values were obtained by ANOVA assuming
unequal variance. Clustering and scatter analysis was
also done in Genesprings.

Microarray data was deposited into the Gene Expres-
sion Omnibus (GEO; accession number GSE18649).

In situ hybridization

E12.5 embryos were fixed in 4% paraformaldehyde
(PFA) overnight at 4°C then processed for paraffin his-
tology. DIG labeled probes for Nfatc1[62] and Ebfl [63]
were synthesized using T7/Sp6 DIG RNA Labeling Kit
(Roche). 5 um thick tissue sections were dehydrated and
fixed for 10 min in 4% PFA then treated with 1 pg/ml
proteinase K for 10 min. Sections were post-fixed in 4%
PFA for 5 min then treated for 10 min with acetic anhy-
dride in 0.1 M triethanolamine. Pre-treatment was done
for 1 hr at 65°C with hybridization buffer (10 mM Tris
pH7.5, 600 mM NaCl, 1 mM EDTA, 0.25% SDS, 10%
Dextran Sulfate, 1x Denhardt’s, 200 pg/ml yeast tRNA,
50% formamide) then incubated overnight at 65°C with
probe diluted 1:100 in hybridization buffer. Post-hybridi-
zation washes were done in 1x SSC/50% formamide at
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65°C for 30 min, TNE (10 mM Tris pH7.5, 500 mM
NaCl, 1 mM EDTA) for 10 min at 37°C, TNE/20 pg/ml
Rnase A for 30 min at 37°C, TNE for 10 min at 37°C,
2x SSC for 20 min at 65°C, and 2 washes in 0.2x SSC
for 20 min each at 65°C. For the antibody incubation,
sections were washed in MABT (100 mM Maleic Acid,
150 mM NaCl, 0.1% Tween-20, pH7.5) then incubated
for 1 hr in 20% heat inactivated sheep serum (HISS) and
2% blocking solution (Roche) in MABT before adding
anti-DIG-AP (1:2500, Roche) in 5% HISS/MABT and
incubating overnight at 4°C. Sections were then washed
with MABT and placed in BM Purple (Roche).

RT-PCR

RNA samples were collected from sclerotome micro-
mass cultures untreated or treated with 5 ng/ml Tgf§1
for 8 hrs, using Trizol (Invitrogen). cDNA was synthe-
sized from equal amounts of total RNA using Super-
script III (Invitrogen) with random primers. Semi-
quantitative PCR was done using equal amounts of
c¢DNA templates and samples were collected at 25, 30
and 35 cycles. Template amount was normalized using
beta2 microglobulin as an internal control. Primer sets
used for PCR are listed in additional file 6: supplemental
table S6. Primers were designed using NCBI primer
BLAST or selected from Primer Bank [64,65].

Additional file 1: IVD enriched genes. List of all E13.5 day IVD enriched
genes.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-213X-10-
29-S1.XLS]

Additional file 2: Vertebrae enriched genes. List of all E13.5 day
vertebrae enriched genes.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-213X-10-
29-S2XLS]

Additional file 3: Genes differentially expressed in control and
Tgfbr2-deleted IVD. List of genes regulated by loss of Tgfbr2 in E13.5
day IVD.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-213X-10-
29-S3XLS]

Additional file 4: TGF-B regulated genes. List of all genes regulated in
sclerotome cells after 8 hours of treatment with 5 ng/ml TGF-B1.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-213X-10-
29-S4XLS]

Additional file 5: BMP4 regulated genes. List of all genes regulated in
sclerotome cells after 8 hours of treatment with 50 ng/ml BMP4.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-213X-10-
29-S5.XLS]

Additional file 6: Primers table. Primers used for PCR.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-213X-10-
29-56.D0C]
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