
BMC Developmental Biology (2001) 1:2 http://www.biomedcentral.com/1471-213X/1/2
BMC Developmental Biology (2001) 1:2Research article
High copy arrays containing a sequence upstream of mec-3 alter 
cell migration and axonal morphology in C. elegans
Nicole Toms, Jennifer Cooper, Brandi Patchen and Eric Aamodt*

Address:  Louisiana State University Health Sciences Center-Shreveport, Department of Biochemistry and Molecular Biology, Shreveport, USA

E-mail: Nicole Toms - eaamod@lsuhsc.edu; Jennifer Cooper - repooc730@aol.com; Brandi Patchen - bpatch@lsuhsc.edu; 

Eric Aamodt* - eaamod@lsuhsc.edu
*Corresponding author

Abstract
Background:  The Caenorhabditis elegans gene mec-3 encodes a LIM-homeodomain protein that is
a master regulator of touch receptor neuron genes. Two of the touch neurons, the ALM neurons,
are generated in the anterior of the animal and then migrate to near the middle of the animal. In
animals transformed with a sequence upstream of mec-3, the ALM touch receptor neurons failed
to migrate to their normal positions and sometimes migrated in the wrong direction, and the PLM
touch receptor neurons showed axonal defects. Here we characterize this effect and identify the
sequence causing the cell migration and axonal defects.

Results:  The ALM migration defect did not result from RNA interference (RNAi), nonspecific
effects of carrying a transgenic array, expression of GFP, or the marker gene used to make the
transformants. Instead, the ALM migration defect resulted from transgenic arrays containing many
copies of a specific 104 bp DNA sequence. Transgenic arrays containing this sequence did not affect
all cell migrations.

Conclusions:  The mec-3 upstream sequence appeared to be sequestering (titrating out) a specific
DNA-binding factor that is required for the ALMs to migrate correctly. Because titration of this
factor could reverse the direction of ALM migrations, it may be part of a program that specifies
both the direction and extent of ALM migrations. mec-3 is a master regulator of touch receptor
neuron genes, so the factor or factors that bind this sequence may also be involved in specifying
the fate of touch receptor neurons.

Background
Cell migration is one of the most important and complex

cellular behaviors. It is essential for animal develop-

ment, immune system function, and wound repair. De-

fects in cell migration can lead to human diseases such as

birth defects, and failure to control cell migration is an

important step in tumor metastasis.

We currently believe that migrating cells extend and re-

tract actin rich protrusions, lamellipodia and filopodia,

into their environment. Protrusions that adhere strongly

enough are stabilized and fail to retract. In this way, cells

(or cell processes) can follow adhesive guidance cues.

While this model has been around for some time [1], we

are only now beginning to understand the molecular sig-

nals that cause cells to initiate movement, how cells

Published: 31 January 2001

BMC Developmental Biology 2001, 1:2

This article is available from: http://www.biomedcentral.com/1471-213X/1/2

(c) 2001 Toms et al, licensee BioMed Central Ltd.

Received: 22 November 2000
Accepted: 31 January 2001

http://www.biomedcentral.com/1471-213X/1/2


BMC Developmental Biology (2001) 1:2 http://www.biomedcentral.com/1471-213X/1/2
move, the signals that guide the cell migrations, and the

signals that stop cells at their appropriate positions.

Recently, progress in understanding cell migration has
come from studies of Caenorhabditis elegans and Dro-

sophila [2]. Most cell migration genes identified in these

simple invertebrates are conserved in vertebrates, which

confirms the efficacy of these genetically tractable sys-

tems for studying cell migration.

C. elegans is a particularly attractive system for the study

of cell migration. These animals are transparent and an-

atomically simple, so cell migrations can be followed in

the living animal at all stages of development by fluores-

cence microscopy of GFP fusion proteins or by Nomarski

microscopy. Both the cell lineage and the cell migrations

are invariant from animal to animal, so migration defects

can be easily identified.

Several genetic screens performed with C. elegans have

identified mutations that interfere with cell migrations

(for reviews see [2, 3]). Some of these mutations affect all

cell migrations, whereas others only affect the migra-

tions of a limited subset of cells. Not surprisingly, many

of these mutants also show defects in axon extension,

bundling and pathfinding. The genes identified by these

mutations encode extracellular proteins, cell surface re-

ceptors, fibroblast growth factor-like proteins and their

receptors, adhesion molecules, small GTPases, non-
muscle myosins and transcription factors.

In C. elegans, three genes, unc-6, unc-5 and unc-40,

guide cells and processes along the dorsal-ventral axis

[4]. All of these genes are conserved across broad groups

of animals from C. elegans to man. UNC-6 protein, a

laminin-like protein that is located in the ventral region

of the animal, is a homolog of the vertebrate protein ne-

trin. UNC-5 and UNC-40 are cell surface receptors that

interact with UNC-6. UNC-5 promotes dorsal migra-

tions, whereas UNC-40 promotes ventral migrations,

both in response to UNC-6 signals. Based on studies in

other species, the difference in how UNC-5 and UNC-40

guide cells and axons lies in their intracellular domains

[5, 6].

Mutations in unc-129, a member of the transforming

growth factor β (TGFβ) superfamily, were identified as

genetic suppressors of ectopic UNC-6 signaling [7]. unc-

129 is expressed dorsally and loss of UNC-129 function

disrupts dorsal axon migrations. In Drosophila, TGFβ
family members are also involved in controlling dorsal-

ventral migrations [8]. It appears, therefore, that the

UNC-6/netrin and TGFβ guidance systems act redun-

dantly and are conserved across species.

The guidance of cells and axons along the anterior-pos-

terior axis of C. elegans is not as well understood. Two

genes involved in anterior-posterior cell migration are

vab-8 and mig-13. VAB-8 is a kinesin-related protein
that acts cell autonomously and is involved in posterior

cell migrations [9, 10]. Therefore, VAB-8 is probably in-

volved in the cellular response to guidance cues. MIG-13

is a novel transmembrane protein that acts non-cell au-

tonomously and is involved in anterior cell migrations

[11, 12]. The dose of MIG-13 appears to affect the extent

of anterior cell migrations [12]. MIG-13 may, therefore,

signal to cells their direction and extent of migration.

Chalfie and colleagues have identified a transcriptional

cascade that leads to the activation of touch neuron-spe-

cific genes. UNC-86 is a POU homeodomain transcrip-

tion factor needed to activate the mec-3 gene [13,14,15].

mec-3 in turn encodes a LIM homeodomain protein that

is expressed in the six touch receptor neurons, two FLP

neurons and two PVD neurons. MEC-3 and UNC-86 pro-

teins form a heterodimer that binds to and activates the

mec-3 promoter and the promoters of touch receptor-

specific genes such as mec-7 and mec-4 [13,14,15]. In this

way, MEC-3 activates its own transcription, which prob-

ably prevents the dedifferentiation of the touch neurons.

Later in development, mec-17 also contributes to the

maintenance of mec-3 expression [16].

We show here that a sequence upstream of mec-3, when
transformed into C. elegans in high copy arrays, altered

the extent and direction of ALM touch receptor neuron

migrations. This sequence also disrupted extension of

the PLM touch receptor axon. These defects did not re-

sult from RNA interference (RNAi), the heavy genetic

load of carrying a transgenic array, the expression of

GFP, or the rol-6 marker gene used to make the trans-

genic arrays. The ALM migration defects were due to a

specific DNA sequence and only occurred when there

were many copies of that sequence in the array. This se-

quence did not affect all cell migrations, the ALM/BDU

cell division or the positions of the BDU cells. We con-

clude, therefore, that the sequence is sequestering a fac-

tor that helps control ALM migrations and PLM axon

outgrowth. We also suggest that this factor may be differ-

entially segregated into touch receptor neurons and that

it may help specify the touch receptor neuron cell fate.

Results
The ALM touch receptor neurons are the lineal sisters of

the BDU neurons [17]. The ALMs are generated anterior

to the BDUs but then migrate posteriorly to near the

middle of the animal, while the BDUs migrate anteriorly

a short distance (Figure 1A) [12]. While looking for the

DNA element that mediates the PAG-3 dependent sup-
pression of mec-3 in the BDU neurons [18, 19], we iden-
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tified extrachromosomal arrays that alter ALM touch

neuron migration. In animals containing these arrays,

the ALM touch neurons are found anterior to their nor-

mal positions. Some ALMs even migrated anteriorly

rather than posteriorly with final positions anterior to

where they originated.

To measure the ALM migration defect in strains contain-

ing these arrays, we conceptually divided the region of

the animal from the rear bulb of the pharynx to the mid-

dle of the animal into 10 sections, identified as positions

1-10 (Figure 1B), and visually scored ALM positions

along this scale. The normal positions of ALMs would be

between 8 and 10 on this scale.

ALM migration and PLM axonal morphology defects
Figure 2 shows fluorescence micrographs and bar graphs

of the positions of the ALMs from strain TU2562, which

has an integrated mec-3gfp (equivalent to pJC8 in Fig-

ure 4), and strain EA485, which contains a high copy ex-

trachromosomal array made from plasmid pJC4 (see
Figure 4 and Materials and Methods). In strain TU2562,

the ALMs migrated close to their normal positions; the

average position was 8.6 (n=190) on the scale described

above. In EA485, the ALMs were usually anterior to their

normal positions; the average position was 4.2 (n=175)

on this scale.

Strains that showed the ALM migration defects also

showed defects in another pair of touch neurons, the

PLMs. Figure 3 shows an example of a normal PLM in

strain TU2562 and several examples of PLMs with axon-

al defects in strain EA485. All of the 189 PLMs scored in

TU2562 had normal morphology, whereas 64% of the

183 PLMs scored in EA485 had defects in axonal mor-

phology. In EA485, the PLM axons were often short,

misdirected and had extra branches.

Axonal defects in the ALMs were less common than in

the PLMs. In EA485, 77.4% of 199 ALMs scored had nor-

mal axonal morphology, whereas in TU2562, all of the

117 ALMs scored had normal morphology. The majority

of ALMs with abnormal axonal morphology were in po-

sitions 1-3 with a few as posterior as position 5. All ALMs

located posterior to position 5 had normal axonal mor-

phology.

The ALM migration defect was due to a specific DNA se-
quence
To determine whether the ALM migration defect was due

to the presence of a specific DNA sequence in the extra-
chromosomal arrays, we generated mec-3gfp deletion

constructs containing various portions of the mec-3 up-

stream sequences. Plasmids pJC8, pJC3, pJC4, pJC1,

pJC18 and pJC19 were made as described in Materials

and Methods and plasmid pPD118.17 was a gift from A.

Fire. We transformed these plasmids into wild type ani-

mals as described in Materials and Methods and

screened for transgenic lines. All of the resulting strains

expressed mec-3gfp in the ten cells where mec-3 is nor-

Figure 1
A. Origin and migration of the BDU and ALM neurons. The ALM touch receptor neurons and the BDU interneurons are lineal
sisters (the AB.arpppapp and AB.arppaapp cells divide to give ALMR/BDUR and ALML/BDUL, respectively). The ALMs are gen-
erated anterior to the BDUs but migrate posteriorly, while the BDUs migrate anteriorly so that each cell stops near the posi-
tions shown. B. Position and axonal morphology of the ALM, AVM and PLM touch receptor neurons. The scale shown at the
bottom was used to measure ALM, BDU and AVM positions in the experiments shown below. The ALMs are located around
position 9, the AVMs are located between positions 6 and 7 and the BDUs are located between positions 3 and 4 in wild type
animals.
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mally expressed. We measured the ALM positions in 100

animals from each strain.

Figure 4 shows the region of mec-3gfp included in each

of the plasmids, the combined distribution of ALM posi-
tions from three strains transformed with each con-

struct, the percent of ALMs that showed migration

defects (those located anterior to position 8) and the to-

tal number of ALMs scored. Strains transformed with

pJC8, pJC3, and pJC4 showed strong ALM migration de-

fects but strains transformed with plasmids pPD118.17

and pJC1 showed few ALM migration defects. The region

from PstI to BbsI appeared to suppress the migration de-

fect (compare pJC3 to pJC4). The 495 bp region from the

5' end of the mec-3 clone to the PstI site appeared to most

strongly affect ALM migrations (compare pJC3 and

pJC4 to pPD118.17 and pJC1). Further deletions of this

region (pJC18 and pJC19) resulted in less severe migra-

tion defects. These data and results described below are

consistent with the hypothesis that this sequence con-

tains multiple binding sites that titrate out a cell migra-

tion factor or factors. Below we refer to this sequence as

the titrating sequence.

The migration defect was not due to nonspecific effects of 
carrying an array, expression of GFP, or the rol-6 transfor-
mation marker gene
The above data also show that the ALM migration and

PLM axonal morphology defects are not due to nonspe-
cific effects of carrying an extrachromosomal array.

Some arrays such as those made with plasmids

pPD118.17 and pJC1 had little effect on ALM migration

and PLM axonal morphology.

There have been reports that expression of GFP in neu-

rons can have toxic effects [20, 21]. The above results,

however, show that neither the migration defects nor the

PLM axonal morphology defects resulted from expres-

sion of GFP. Some arrays, such as the integrated array in

strain TU2562 and the extrachromosomal arrays con-

taining plasmids pPD118.17 and pJC1, express GFP yet

had few ALM migration or PLM axonal morphology de-

fects. The lines transformed with pJC1 had especially

bright GFP fluorescence yet had few ALM or PLM de-

fects.

All of the lines shown in Figure 4 were made by co-injec-

tion of the plasmid of interest and the plasmid pRF4,

which contains the rol-6(su1006) marker gene. Because

some of these arrays, and others described below, did not

Figure 2
ALM positions in lines TU2562 and EA485. Micrographs on the left show examples of the positions of the FLPs, AVM and
ALMs in TU2562 and EA485. The animals are positioned with anterior to the left. White areas are cells expressing green fluo-
rescent protein. Bar graphs on the right show the number of ALMs at each position in 100 animals from each strain. The ALM
positions in TU2562 were similar to those in wild type animals whereas the ALMs in EA485 were located significantly anterior
to their normal positions. The system for scoring ALM positions is described in Figure 1.
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induce ALM migration or PLM axonal defects, these phe-

notypes were not due to the rol-6 marker plasmid.

The ALM migration defect was not due to RNAi
In C. elegans, the presence of double stranded RNA that

corresponds in sequence to a gene will usually result in

silencing of that gene [22]. This effect is referred to as

RNA interference or RNAi. In several cases where trans-

genic arrays induced odd phenotypes, the authors at-

tribute this to RNAi effects resulting from cryptic

promoters on either side of the transformed gene [23]. In

the case described here, it seemed unlikely that RNAi
was inducing the ALM migration or the PLM axonal

morphology defects because there is no predicted pro-

tein-encoding gene in the titrating sequence. It was con-

ceivable, however, that a small, undetected gene was

present in this sequence. To test this possibility, we gen-

erated double stranded RNA that corresponded to the se-

quence 5' of the PstI restriction site and injected it into

TU2562 animals. TU2562 was chosen because it ex-

presses GFP in its ALMs and these neurons migrate nor-

mally.

In strain TU2562 the average ALM position was 8.6. In

two separate experiments, TU2562 injected with double
stranded RNA containing the mec-3 sequence 5' of the

Figure 3
Fluorescence micrographs showing PLM axonal morphology in TU2562 and EA485. The top panel shows a PLM with normal
morphology in a TU2562 animal. The next five panels show examples of PLMs with axonal morphology defects in EA485 ani-
mals. The white spots anterior to the PLMs are the mec-3 expressing PVM and PVD neurons.
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Figure 4
ALM positions in strains transformed with mec-3 upstream regions. Data from strain TU2562 is included to show the normal
distribution of ALMs. The diagrams on the left indicate the regions of mec-3 in each plasmid. ATG marks the translational start
site. Bsa BI, BglII, PstI and BbsI are restriction enzyme cutting sites. Filled rectangles represent mec-3 exons. The open rectangles
marked GFP represent green fluorescent protein encoding sequences. pJC8 begins 2372 bp upstream of the mec-3 translational
start site and is fused to GFP at the end of exon 3. The bar graphs show the number of ALMs at each position. The number of
ALMs is on the Y-axes and the position is on the X-axes. For most constructs, 100 animals from each of three separate trans-
genic lines were scored for ALM positions. For two strains transformed with pJC3, 200 animals were scored. The percent
refers to the percent of ALMs anterior to position 8, and n is the total number of ALMs scored. The system for scoring ALM
positions is described in Figure 1.
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PstI restriction site also had average ALM positions of

8.6 (n=190 and n=167). These RNA injected animals also

had normal PLM axonal morphology. Therefore, the

ALM migration and the PLM axonal morphology defects
were not due to RNAi.

Many copies of the titrating sequence were required to in-
duce the ALM migration defect
To determine whether the migration defect resulted

from having many copies of the titrating sequence, we

made transformants with different mixtures of plasmid

and genomic DNA. Kelly et al. [24] have shown that

blunt end cut plasmids injected with blunt end cut ge-

nomic DNA will form complex arrays that contain ge-

nomic DNA intermixed with a few copies of the plasmid.

To generate arrays with different numbers of copies of

pJC4, we co-injected pJC4 plasmid DNA with pRF4 and

genomic DNA as described in Materials and Methods.

We measured the positions of the ALMs in 100 animals

from one transgenic strain made with each DNA mix-

ture.

Figure 5 shows a plot of the average ALM position versus

the concentration of pJC4 in the injection mixture. The

ALMs were close to their normal positions in the strains

made with 2, 4, 8, 16 and 32 µg/ml of pJC4 but showed a

clear migration defect at 64 and 128 µg/ml of pJC4.

Having a promoter near the titrating sequence did not en-
hance the ALM migration defect
All of the plasmids shown in Figure 4 contained both the

mec-3 promoter and the GFP encoding sequence. We
reasoned that pJC4 may have caused more severe migra-

tion defects than pJC8 and pJC3 because in pJC4 the ti-

trating sequence was closer to the promoter and was

thereby more accessible to binding factors. To determine

whether having a promoter present increased the effec-

tiveness of this sequence, we made two plasmids shown

in Figure 6. Plasmid pJC11 had the region upstream of

the PstI site fused to the region of the mec-3 promoter,

whereas pJC10 had just the mec-3 region upstream of

the PstI site. We transformed TU2562 with these plas-

mids and generated transgenic lines. Because the extra-

chromosomal arrays did not contain mec-3gfp, we first

picked rollers and then scored them for ALM position.

Due to the mosaic inheritance of extrachromosomal ar-

rays, some of the ALMs scored may not have contained

the array.

Figure 6 shows the regions of mec-3 included in each

plasmid and the distribution of ALM positions from

three separate strains made with each plasmid. On the

right are listed the percent of ALMs that showed migra-

tion defects and the total number of ALMs scored from

the three strains transformed with each construct. Plas-

mids pJC10 and pJC11 appeared to be equally capable of

inducing ALM migration defects.

What is the sequence?
To further refine the region responsible for inducing the

ALM migration defect, we generated plasmids contain-

ing further deletions of the 495 bp mec-3 region up-

stream of the PstI site. We transformed these plasmids

into TU2562 and analyzed the ALM positions in the re-

sulting lines as we did for the lines shown in Figure 6.

Figure 7 shows the results of this experiment. Arrays

containing pJC15 induced migration defects less effec-

tively than arrays containing pJC10 (Fig. 6), so sequenc-

es within the PstI to BglII region appear to contribute to

the migration defect. However, the pJC13 data show that

arrays containing this sequence by itself induced few mi-

gration errors. pJC15 arrays and pJC14 arrays induced

similar migration defects, so the sequence from the BglII

to the HpaI restriction sites did not appear to contribute

to the migration defect. pJC16 arrays induced fewer mi-

gration defects than pJC14 arrays and pJC17 arrays in-

duced fewer migration defects than pJC16 arrays, so

there appeared to be multiple sequences between the

HpaI and BsaBI restriction sites that contributed to the

migration defect.

Does this sequence affect all cell migrations?
The QR.p neuroblast is generated in the posterior of the

animal [12, 25]. As shown in Figure 8A, it migrates ante-
riorly to the middle of the animal where it stops and then

Figure 5
The ALM migration phenotype depended on the amount of
pJC4 in the array. Arrays were made with different concen-
trations of pJC4 as described in Materials and Methods. We
measured the positions of ALMs in 100 animals from each
strain and calculated the average position.
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divides. One of the resulting cells, QR.pp, undergoes pro-

grammed cell death while the other, QR.pa migrates for-

ward to about position 7 and again stops and divides.

QR.pa gives rise to two neurons, SDQR and the AVM

touch receptor neuron. Thus, if the transgenic arrays

containing the titrating sequence affect all cell migra-

tions, the AVMs should also be misplaced.

To test this idea, we measured the AVM positions in

TU2562 and EA485. Figure 8B shows the distributions

of AVM positions for these two strains. The average po-

sitions of the AVMs in EA485 and in TU2562 were both

6.3. As shown above, the ALMs in TU2562 were near

their normal positions, whereas the ALMs in EA485

were grossly misplaced. Clearly, the migrations of the

QR.p neuroblast and its daughter, QR.pa, unlike the

ALM neurons, were not affected by the extrachromo-

somal array in EA485.

The ALM migration and the PLM axonal morphology de-
fects are highly correlated
Strains that had many ALM migration defects also had

many PLM axonal defects. The correlation coefficient of

the average ALM position versus the percent of animals

with PLM axonal defects was -0.99. This correlation be-

tween the ALM defects and the PLM defects is consistent

with both defects resulting from the titration of the same

factor or factors.

The titrating sequence did not affect the ALM/BDU cell di-
vision or the positions of the BDUs
In strains containing these arrays, some of the ALMs that

were anterior to position 6 had an axonal morphology

similar to their lineal sisters, the BDU neurons. We won-

dered whether in these animals the ALM/BDU cell divi-

sion was not occurring and the progenitor of these

neurons was taking on some of the character of both

cells. This ALM/BDU cell might migrate anteriorly, like

a BDU, and express mec-3gfp, like an ALM. To address

this, we asked whether the BDU neurons were present in

animals where the ALMs were displaced anteriorly. We

Figure 6
The mec-3 promoter did not enhance the titration effect. The sequence from the BbsI site to the mec-3 translation start site
contained the mec-3 promoter. Plasmid pJC11, which contained the mec-3 promoter, and plasmid pJC10, which did not contain
the mec-3 promoter, were transformed into strain TU2562. Three lines were generated from each plasmid. The bar graphs
show the positions of ALMs from 100 animals for each of the three lines. The percent of misplaced ALMs and the number of
ALMs scored are shown on the right.
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took advantage of the fact that in pag-3 mutants, mec-

3gfp is expressed in both the ALMs and in the BDUs

(McDermott, J. et al., unpublished results). We crossed

the pJC4 array in EA485 into a pag-3(ls20) genetic back-

ground to generate strain EA489. As a control, we

crossed the integrated array in TU2562 into a pag-

3(ls20) genetic background to generate strain EA363. In

these strains, we measured the positions of the ALMs

and BDUs. In a pag-3(ls20) background, the BDU neu-

rons have a lower level of mec-3gfp expression than the

Figure 7
mec-3 upstream sequences that contribute to ALM migration defects. The diagrams on the left indicate the regions of mec-3 in
each plasmid. The top diagram labeled mec-3 includes sequences from 2400 bp 5' of the mec-3 translational start site (ATG)
through exon 3. PstI, HincII, BglII and HpaI indicate restriction enzyme cutting sites. Three lines were generated for each plas-
mid. The bar graphs show the positions of ALMs from 100 animals for each of the three lines. The percent of misplaced ALMs
and the number of ALMs scored are shown on the right.
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ALM neurons so these neurons can be easily distin-

guished. In EA489, the BDUs were present even in ani-

mals with ALMs anterior to position 3 and they were

located in their normal positions. The average position of

BDUs in EA489 was 3.3 (n=50). The average position of

BDUs in EA363 was 3.6 (n=50). Thus, the ALM/BDU

cell divisions were taking place and the BDUs were mi-

grating normally in these strains.

The migration defect was cold sensitive
To determine whether the ALM migration defect was

sensitive to temperature, we grew EA471 and TU2562 at

15°C, 20°C and 25°C. We then measured the positions of
the ALMs in each strain grown at each temperature.

EA471 (a strain transformed with pJC3) was chosen be-

cause it showed an intermediate distribution of ALM po-

sitions at 20°C (see Figure 4), so either an anterior or a
posterior shift would be apparent. TU2562 was chosen

because its ALMs migrated close to their normal posi-

tions at 20°C.

Figure 9 shows the distribution of ALM positions for

each strain at each temperature. The temperature at

which the animals were grown affected ALM migrations

in both EA471 and TU2562. ALMs were located more an-

teriorly in both EA471 and TU2562 grown at 15°C.
TU2562 grown at 25°C had fewer ALMs anterior to posi-

tion 9 than TU2562 grown at 20°C.

Discussion
We have identified a sequence in the mec-3 upstream re-

gion that, when present in high copy extrachromosomal

Figure 8
A. Migration of the QR.p neuroblast (open oval) and its descendants. The QR.p neuroblast is generated in the posterior half of
the animal and then migrates to about position 10. It then ceases to migrate and divides. One of the QR.p descendants under-
goes programmed cell death (X) and the other migrates to about position 7. It then divides to generate the SDQR and AVM
neurons (closed ovals). Figure 9A is based on Sulston and Horvitz [25]. B. AVM positions in EA485 and TU2562. The average
position for 100 AVMs in both EA485 and TU2562 was 6.3. The AVM positions were measured as described in Figure 1.
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arrays, caused the ALM touch receptor neurons to mi-

grate aberrantly and caused PLM touch receptor neuron

axonal defects. These defects were not due to RNAi, non-
specific effects of carrying a transgenic array, expression

of GFP, or the marker gene used to make the transform-

ants. Rather, these defects resulted from transgenic ar-

rays containing many copies of a specific sequence from

the mec-3 upstream control region.

Figure 1A shows the direction and extent of the ALM and

BDU cell migrations. ALMs that failed to migrate would

remain around position 5 [12]. In strains transformed

with the titrating sequence, the ALMs often migrated an-

teriorly rather than posteriorly and were located anterior

to position 5. Thus, the arrays appeared to be sequester-

ing a factor that controls both the direction and extent of

ALM migrations. Presumably, the BDU neurons normal-

ly inherit a small amount of this factor and migrate ante-

riorly, while the ALMs inherit a larger amount of this

factor and migrate posteriorly.

All ALMs that showed defects in axon morphology were

anterior to position 6. Perhaps ALMs positioned anterior

to position 6 sometimes fail to find their normal axon
guidance cues. Interestingly, some of these anteriorly po-

sitioned ALMs had axon morphologies similar to BDU

neurons. These cells, being deprived of their own axon

guidance cues, may have followed the BDU axon guid-

ance cues.

Figure 4 shows that the sequence upstream of the PstI re-

striction site appeared to contribute strongly to the ALM

migration defects. Plasmids containing this sequence

(pJC8, pJC3 and pJC4) induced many ALM migration

defects, whereas plasmids lacking this sequence

(pPD118.17 and pJC1) induced few migration defects.

Figure 6 shows that this upstream mec-3 sequence alone

(pJC10) was sufficient to induce migration defects.

Smaller pieces of the sequence upstream of the PstI site

are also sufficient to induce ALM migration defects (Fig.

7). The smallest sequence tested that caused the migra-

Figure 9
The effect of temperature on the ALM migration defect. Strains EA471 and TU2562 were grown at 15°C, 20°C and 25°C for
more than a generation and the number of ALMs at each position was measured in 100 animals as described in Figure 1.
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tion defects (pJC16, Fig. 7) contained only 157 bp up-

stream of the EcoRI restriction site.

These conclusions assume that the arrays generated for
each construct have roughly the same number of copies

of the titrating sequence. We controlled for strain-to-

strain variability in the array size by discarding strains

with low transmission frequencies (see Materials and

Methods) and by combining the data from at least three

independently generated strains transformed with each

construct. Because the strain-to-strain variability was

small, this assumption is probably valid.

Other sequences around the titrating sequence appeared

to facilitate the binding of the factor or factors involved

in controlling ALM cell migrations. For instance, plas-

mid pJC10, which contained more surrounding se-

quence, was more effective than pJC15. These

surrounding sequences may contain additional binding

sites for this factor or the migration factor may interact

with other proteins that bind the mec-3 upstream se-

quences. Thus, the binding of one factor might coopera-

tively facilitate the binding of other factors. Li et al. [26]

identified a sequence upstream of her-1 that phenocop-

ied an sdc mutation when transformed into C. elegans in

high copy arrays. They too found that several regions of

the her-1 upstream sequence contributed to the effect.

The results shown in Figure 7 suggest that a 104 bp se-
quence, 5'AAATCTCAAT-10-CTAAAAACAT-20-TTTTA-

GAACT-30-TTTTCAAAGA-40-TATGTTGAAT-50-TCTG

GCAACT-60-TTAGGTAGTT-70-TTAAATTTTC-80-CAC

GAAAT TT-90-CAAATC AAAT-1 00- GTTA3', contribut-

ed strongly to the ALM migration defects. The region

from nucleotide 39-96 is a degenerate palindrome. With-

in this palindrome there are two more levels of nested

palindromes. For instance, the 69-96 region is palindro-

mic, and within the 69-96 region, the 84-96 region is pal-

indromic.

Some of this interesting sequence structure may result

from the juxtaposition of transcription factor binding

sites. For instance, the sequence from 72-92 would be an

excellent binding site in both its forward and reverse ori-

entations for the Drosophila STAT transcription factor

D-STAT [27]. There are two proteins with homology to

the STAT family of transcription factors in C. elegans.

This sequence is followed by the repeated sequence

caaatcaaat, which would provide two good binding sites

for the mammalian brain POU transcription factor Brn-

2 [28]. Brn-2 is related to UNC-86, which is required to

initiate and sustain mec-3 expression.

The titrating sequence is located between two genes that
are positioned head-to-head, mec-3 and F01D4.1, which

encodes a UDP-glucoronosyltransferase. The titrating

element could be regulating either, neither, or both of

these genes. Because this element appeared to sequester

a factor involved in ALM migration and PLM axon out-
growth, it is probably a mec-3 control element.

mec-3gfp fusion genes that lack this element appear to

be correctly expressed. What aspect, then, of mec-3 ex-

pression is affected by this control element? mec-3 is ac-

tivated by UNC-86 protein [13,14,15]. Once MEC-3

protein is made, UNC-86 and MEC-3 form a heterodim-

er that more effectively activates mec-3. Perhaps the ti-

trating element is involved in the initial mec-3 activation.

This role would not be apparent in mec-3gfp fusion

genes because they would be activated by the endog-

enous UNC-86/MEC-3 heterodimer. Alternatively, this

element might help sustain mec-3 expression. Finally,

this element might modulate mec-3 expression in a way

that is not evident by looking at the MEC-3GFP fluores-

cence.

Figure 5 demonstrates that the ALM migration defect

arises due to having many copies of the titrating se-

quence. Arrays made with few copies of pJC4 did not in-

duce ALM migration defects, whereas arrays containing

many copies of pJC4 did, thus suggesting that the arrays

that altered ALM cell migrations acted by titrating a con-

trol factor.

It is somewhat surprising that high copy arrays could ti-

trate this factor to low enough levels to induce pheno-

types. Transgenic arrays in C. elegans contain about 50-

100 copies of the plasmids used to make the array [29].

Assuming that each copy of the titrating sequence bound

only one molecule, then shifting the concentration of this

DNA binding factor by as few as 100 molecules caused

the ALM migration defects. Because this factor is titrata-

ble, it may be present at low concentrations and bind

with high affinity to the mec-3 upstream sequence.

Perhaps this factor is present at low concentration be-

cause it is part of a mechanism for sensitive regulation of

a cell state. The relative level of a factor present at low

concentration should be easier to change than that of a

factor present at high concentration. These results sug-

gest that ALM migrations are carefully regulated by the

concentration of a specific DNA binding protein that is

present in the cell in only a few copies.

The need for an all-or-nothing response could also ex-

plain why there appear to be multiple sequences that

contribute to the titration. One mechanism for steepen-

ing the response of an effector molecule is to require that

more than one molecule bind to the target to induce a re-
sponse. Perhaps the migration factor binds to several
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sites in both mec-3 and in the cell migration genes, and

multiple sites must be bound to affect expression.

The factor sequestered by the titrating sequence does not
affect all cell migrations. The AVM touch receptor neu-

rons in EA485, a strain which showed a strong ALM mi-

gration defect, were located in the same position as the

AVMs in TU2562, a strain which showed few ALM mi-

gration defects (Fig. 8). The AVM's lineal mother and

grandmother both migrate anteriorly and if either of

these migrations were defective, the AVMs would be mis-

positioned. We do not know whether other cell migra-

tions were affected by the titrating sequence, but no

other phenotypes were observed in animals with severe

ALM migration defects.

The incidence of PLM axonal defects correlated well with

the ALM migration defects. We believe, therefore, that

the PLM defects were induced by titration of the same

factor or factors that control ALM migrations. In both

cases, the cells failed to correctly interpret anterior-pos-

terior spatial information. However, the ALMs migrated

to more anterior positions, whereas the PLMs axons of-

ten terminated at more posterior positions.

Temperature had a strong effect on the ALM migration

defects (Fig. 9). In cells grown at lower temperatures, the

titrated factor may be less active, it may be produced at

low concentrations, it may bind to arrays more tightly, or
it may interact with its ligand less effectively. The cold

sensitivity of the ALM migration defect may be useful for

identifying genetic suppressors of the migration defect.

The factor titrated by this sequence may also be involved

in differentiating ALMs and BDUs. It may be present in

AB.arpppapp and AB.arppaapp, the progenitors of

ALMR/BDUR and ALML/BDUL, respectively. When

these cells divide to generate ALMs and BDUs, the factor

may differentially segregate into the ALMs. A high con-

centration of this factor may direct the ALMs to migrate

posteriorly while a low level of this factor may direct the

BDUs to migrate anteriorly. Furthermore, this factor

may help activate mec-3 expression and thereby cause

the ALMs to differentiate into touch receptor neurons.

As was true in sea urchin embryos [30, 31], titration of

transcription factors with high copy transgenes may be

useful for characterizing control elements in C. elegans.

The ALM migration defect should be useful for identify-

ing optimal conditions for the titration of DNA binding

protein with high copy arrays. We do not know, at this

point, how often transcription factors will be present at

low enough concentrations and bind DNA with enough

affinity to apply this approach. Because others have also
reported competitive titration by transgenic sequences

in C. elegans [26, 32], we expect that it will not be un-

common. Certainly, some of the artifacts associated with

transformation of C. elegans with high copy arrays may

result from titration of DNA binding factors [23]. Trans-
formation of C. elegans with low copy arrays made with

complex carrier DNA prevented the titration effects, so

the use of low copy arrays may be prudent where titra-

tion effects are not desired.

Kelly et al. [24] found that inclusion of complex carrier

DNA in C. elegans transformation experiments im-

proves the function of certain co-injected reporter con-

structs. These effects include both increased expression

and improved uniformity of transgene expression. Fig-

ure 5 shows that including complex carrier DNA may

also prevent transformation artifacts resulting from ti-

tration of transcription factors.

Conclusions
The experiments described here show that transforma-

tion of C. elegans with many copies of a specific sequence

located upstream of mec-3 induced cell migration and

axonal guidance defects. This mec-3 upstream sequence

appeared to be sequestering a factor involved in control-

ling ALM migration and PLM axonal outgrowth. This

factor may also regulate mec-3 and thereby control touch

receptor neuron fate. Titration of transcription factors

with high copy arrays may become widely applicable in

C. elegans once conditions that optimize this effect are
found. The ALM defect described here may be useful for

finding these conditions.

Materials and Methods
Worm culture and strain methods
C. elegans were maintained as described by Brenner

[33]. Animals were grown at 20°C unless otherwise stat-
ed. The wild type strain was N2 var. Bristol. Strain

TU2562, mec-3gfp(uIs22), was a gift from M. Chalfie.

Plasmid constructs
Standard molecular biology methods were used in mak-

ing the following plasmids [34]. To make pJC1, we re-

moved a PstI-BbsI fragment from pPD118.17, a gift from

A. Fire. To make pJC3, we subcloned the NsiI-PstI frag-

ment (1246 bp) of pTU23 [35] into the PstI site of

pPD118.17. We made pJC4 by deleting the PstI-BbsI

fragment (1329 bp) from pJC3.

We made pJC8 from pBS1 and pJC3. To make pBS1, the

oligonucleotides 5' ACCTCCCAAACTATAGATTGGGTG3'

and 5'CGGCCAGAGTCGACTCACATATTG3' were used to

amplify a 1370 bp fragment from pTU23. This intro-

duced a SalI site near the 3' end of the third exon of mec-

3. We digested this fragment with HindIII and SalI, and
ligated it into the HindIII and SalI sites of pPD95.67, a
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gift from A. Fire. We removed the KpnI-KpnI fragment

from pBS1 to make pBS1∆K. We digested pBS1∆K and
pJC3 with both BbsI and XhoI to remove a 1657 bp piece

and a 908 bp piece, respectively. The remaining frag-
ments were religated to make pJC8.

The only mec-3 sequence in plasmid pJC10 was the 495

bp sequence 5' to the PstI site. We constructed pJC10 by

deleting the PstI-NheI fragment (2861 bp) from pJC3. To

make pJC11, we removed the NotI-NheI fragment (944

bp) from pJC4. Plasmid pJC12 was a HincII-HincII dele-

tion (443 bp) of pJC10. To make pJC13, we removed the

HincII-BglII fragment (602 bp) from pJC10. pJC14 was

a HpaI-BspEI deletion (309 bp) of pJC10, and pJC15 was

a BglII-BspEI deletion (150 bp) of pJC10. To make

pJC16, we digested pJC10 with BspEI and EcoRI to re-

move a 365 bp fragment. pJC17 was a BspEI-BsaBI dele-

tion (412 bp) of pJC10. pJC18 was a HincII-HincII

deletion (443 bp) of pJC4, and pJC19 was a BsaBI-BglII

deletion (262 bp) of pJC4. All plasmids were prepared

with the Wizard midiprep kit (Promega).

Transformation of C. elegans
Germ-line transformation was done as described by Mel-

lo et al. [29]. All constructs were co-injected with plas-

mid pRF4 containing the semidominant rol-6(su1006)

allele, which causes a roller phenotype. Plasmids pJC1,

pJC3, pJC4, and pJC8 were injected into N2 wild type

animals at 100 µg/ml. Plasmids pJC10-pJC15 were in-
jected into TU2562 at 100 µg/ml. Plasmid pRF4 was co-

injected with all plasmids at 100 µg/ml.

To test whether the number of copies in the arrays had an

effect on ALM migration, StuI cut pJC4 was co-injected

with SmaI cut pRF4 and PvuII cut genomic DNA at the

following concentrations (µg/ml): 2, 2, 100; 4, 4, 92; 8,

8, 84; 16, 16, 68; 32, 32, 36; 64, 32, 18; and 128, 32, 9, re-

spectively. Larger arrays are transmitted to the next gen-

eration more effectively than smaller arrays [36]. All of

the strains presented here had transmission frequencies

greater than 16%.

Microscopy
Microscopy was done on an Olympus IMT-2 inverted mi-

croscope and on an Olympus AX70 microscope. A Power

Mac G3 7100/80 with a frame grabber and IPlab soft-

ware was used to collect and process images from the

AX70. Both microscopes were equipped with fluores-

cence and Nomarski optics. Animals were immobilized

with approximately 30 mM sodium azide and viewed at

100 X or 400 X.

RNAi
To make double stranded RNA for RNAi, we placed the
PstI-RsaI fragment from pJC3 into pBluescript II KS+.

RNA was made from the T3 and T7 promoters in pBlue-

script with a Maxiscript kit (Ambion). The dsRNA was

injected at a concentration of 25 µg/ml.

Computer analysis
Sequence homologies were identified with the Blast algo-

rithm [37, 38] at the National Center for Biotechnology

Information (http://www.ncbi.nlm.nih.gov/). To identi-

fy long-range palindromic structures, an RNA secondary

structure algorithm in the program DNASIS version 2.0

was used. Transcription factor binding sites were identi-

fied with MatInspector at http://genomatix.gsf.de/cgi-

bin/matinspector/matinspector.pl [39].
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