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Abstract

Background: Alterations in maternal environment can sometimes affect embryonic development in a sexually-
dimorphic manner. The objective was to determine whether preimplantation bovine embryos respond to three
maternally-derived cell signaling molecules in a sex-dependent manner.

Results: Actions of three embryokines known to increase competence of bovine embryos to develop to the
blastocyst stage, insulin-like growth factor 1 (IGF1), activin A, and WNT member 7A (WNT7A), were evaluated for
actions on embryos produced in vitro with X- or Y- sorted semen from the same bull. Each embryokine was tested
in embryos produced by in vitro fertilization of groups of oocytes with either pooled sperm from two bulls or with
sperm from individual bulls. Embryos were treated with IGF1, activin A, or WNT7A on day 5 of culture. All three
embryokines increased the proportion of cleaved zygotes that developed to the blastocyst stage and the effect was
similar for female and male embryos. As an additional test of sexual dimorphism, effects of IGF1 on blastocyst
expression of a total of 127 genes were determined by RT-qPCR using the Fluidigm Delta Gene assay. Expression of
18 genes was affected by sex, expression of 4 genes was affected by IGF1 and expression of 3 genes was affected
by the IGF1 by sex interaction.

Conclusion: Sex did not alter how IGF1, activin A or WNT7A altered developmental competence to the blastocyst
stage. Thus, sex-dependent differences in regulation of developmental competence of embryos by maternal
regulatory signals is not a general phenomenon. The fact that sex altered how IGF1 regulates gene expression is
indicative that there could be sexual dimorphism in embryokine regulation of some aspects of embryonic function
other than developmental potential to become a blastocyst.
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Background
The environment established by the mother for the pre-
implantation embryo plays a key role in ensuring proper
development. Its importance for the fate of the embryo
can be observed by examination of the consequences of
embryo production in vitro, i.e., in the absence of mater-
nal signals. Such embryos differ from their in vivo coun-
terparts in terms of gene expression [1], metabolism [2],
lipid content [3, 4], ultrastructure [5], freezability [6],

DNA methylation [7], competence to establish pregnancy
[8] and postnatal phenotype [9–12]. One of the mecha-
nisms by which the mother controls embryonic develop-
ment involves secretion of cell signaling molecules called
embryokines that modulate embryonic growth, differenti-
ation and other aspects of embryonic function. Among
the embryokines that improve development of embryos to
the blastocyst stage in the cow are activin A [13], colony
stimulating factor 2 (CSF2) [14, 15], insulin-like growth
factor 1 (IGF1) [16], interleukin-1β [17], and WNT mem-
ber 7A (WNT7A) [18].
Some alterations in the maternal environment during the

periconceptional period affect developmental outcomes of
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female embryos differently than male embryos. Examples
include consequences of in vitro embryo production [19]
and maternal deficiency in dietary protein in mice [20], and
feeding a diet deficient in vitamin B and methionine in
sheep [21]. Sexual dimorphism in response to altered ma-
ternal function could be mediated by changes in secretion
of embryokines which act on female embryos differently
than male embryos. In cattle, differences in DNA methyla-
tion exist between female and male embryos as early as the
8-cell stage [22] and, by the blastocyst stage, expression of as
many as one third of the expressed genes differ according
to sex [23]. Experiments with CSF2 indicate that differences
in cellular function between female and male embryos can
lead to differential responses to cell signaling molecules.
Treatment of bovine embryos with CSF2 from Day 5 to 7
of development (i.e., when the embryo transitions from the
morula to blastocyst stages of development) increased the
proportion of female embryos becoming blastocysts while
not affecting development of male embryos [15]. Treatment
of embryos with CSF2 from Day 5 to 7 also acted in a
sexually-dimorphic manner to affect development subse-
quent to Day 15 when embryos were transferred into re-
cipient females [24]. For female embryos, CSF2 treatment
decreased trophoblast elongation and secretion of the ma-
ternal recognition of pregnancy protein, interferon-τ, but
opposite effects occurred in male embryos.
It is not known whether sexual dimorphism in embryonic

responses to embryokines is a widespread phenomenon or
occurs for a few regulatory molecules only. To address this
question, the present series of experiments were performed
to determine whether three embryokines exert differential
effects on female and male embryos in the cow. The three
molecules studied, IGF1, activin A, and WNT7A, were
chosen because genes for each of the molecules are highly
expressed in the bovine endometrium during the first 7 days
of the estrous cycle [25] and the proteins act on the bovine
embryo to increase development to the blastocyst stage in
culture [13, 16, 18].

Results
Development to the blastocyst stage
Results are shown in Fig. 1. Each of the embryokines
tested increased the percent of cleaved embryos becoming
a blastocyst compared to the vehicle group. This was the
case for IGF1 (experiment 1, P = 0.006; experiment 2, P =
0.08), activin A (experiment 3, P = 0.0002; experiment 4,
P = 0.0028) and WNT7A (experiment 5, P = 0.005; experi-
ment 6; P = 0.011). In general, the percent of cleaved em-
bryos becoming a blastocyst was not affected by sex. The
exception was for experiment 3 in which effects of activin
A were tested for embryos produced using pooled sperm-
atozoa. In this case, a higher proportion of cleaved em-
bryos inseminated with Y-sorted spermatozoa reached the
blastocyst stage than cleaved embryos produced using

X-sorted spermatozoa. There was no significant inter-
action between sex and treatment for any embryokine.
Rather response to treatment with IGF1, activin A and
WNT7A was similar for female and male embryos.

Gene expression
As an additional test of whether sex affects response of
the embryo to embryokines, the effect of IGF1 on gene ex-
pression of female and male blastocysts was assessed by
evaluating expression using two separate 96-gene plat-
forms. In total, expression of 127 genes was assessed (ex-
clusive of housekeeping genes), including 53 genes for
both experiments 1 and 2, 37 genes unique to experiments
1 and 37 genes unique for experiment 2. Complete results
are presented in Additional file 1 and results for genes af-
fected by IGF1 or the interaction between IGF1 and sex
are presented in Fig. 2.
Expression of 18 genes was significantly affected by

sex (P < 0.05), with 12 genes (ACTA2, AKR1B1, AMOT,
APOA1, ESRRB, HSD3B1, IFNT, MUC1, PPP2R3A,
TGFB1, UBE2A, and XIAP) upregulated in females and
6 genes (CCL11, ELF5, INADL, MAPK13, ROBO, and
SLIT2) downregulated in females (i.e., upregulated in
males). Three of the 12 genes upregulated in female em-
bryos were on the X chromosome (AMOT, UBE2A, and
XIAP) and none of the genes upregulated in males were
located on the Y chromosome.
There were a total of 4 genes whose expression was

significantly affected by the main effect of IGF1 with
three genes upregulated (SNAI1, STAT4, and TNFSF8)
and one gene downregulated (PRKAR2B). There were
also three genes affected by the IGF1 by sex interaction
(BMP4, CCR2, and DNMT1). For BMP4 and CCR2,
IGF1 did not change expression in females but de-
creased expression in males. Note that expression of
CCR2 was very low, particularly in females. For DNMT1,
IGF1 increased expression in females but decreased ex-
pression in males.

Discussion
None of the three embryokines tested here affected devel-
opmental potential to the blastocyst stage of the bovine
embryo in a sex-specific manner. In this regard, these
molecules differ from another important embryokine,
CSF2. Female and male embryos respond differently to
CSF2 as revealed by differences in gene expression at the
morula stage [15], competence to develop to the blasto-
cyst stage [15], and elongation of the trophoblast at day 15
of development [24]. Thus, despite differences between
female and male embryos at the transcriptome level as
early as the morula and blastocyst stages (present results
and earlier studies [23, 26]), our data indicate that
sex-dependent differences in regulation of developmental
competence of embryos by maternal regulatory signals is
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Fig. 1 Effect of exposure of female and male embryos to embryokines (T) or vehicle (V) from Day 5 to Day 7 after insemination on the ability of
cleaved embryos to develop to the blastocyst stage. Data are the least-squares means ± SEM. Significant effects are indicated in each panel
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not a universal phenomenon. Rather, it is likely that sex
regulates specific cell signaling pathways so that some
embryokines regulate developmental competence in a
sex-specific way where others do not. The fact that sex al-
tered how IGF1 regulates gene expression is indicative
that there could be sexual dimorphism in embryokine
regulation of aspects of embryonic function other than
ability to develop to the blastocyst stage.
The three embryokines tested here exert their actions

by downstream pathways distinct from each other.

Activin A signals via SMAD proteins [27] and IGF1 acti-
vates the phosphatidylinositol 3′ kinase/AKT pathway to
block apoptosis [28] and the RAS/RAF/MAP kinase path-
way to promote cell proliferation, growth and differenti-
ation [16, 29]. WNT7A can activate β-catenin-mediated
WNT signaling [30] as well as the planar cell polarity
pathway [31]. The cell signaling pathway for actions of
CSF2 on the preimplantation embryo are not well under-
stood because the early embryo does not express CSFRB
[14], one of the two subunits of the CSF2 receptor.
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However, work with pig trophectoderm cells, in which
CSFRB is also not expressed, indicate that CSF2 signals
through phosphatidylinositol 3-kinase [32]. Since IGF1
prevents apoptosis through activation of this pathway [28]
one cannot rule out that antiapoptotic actions of IGF1 are
sexually-dimorphic. Indeed, there could be other aspects
of development of the blastocyst not studied here, includ-
ing downstream effects that occur much later in develop-
ment, that could differ between female and male embryos.
Embryokines like CSF2 [33, 34] and DKK1 [35] can act on
the preimplantation embryo to affect fetal and postnatal
phenotypes. Despite the lack of difference on development
to blastocyst stage, the observation that expression of
three genes was affected by the IGF1 by sex interaction is
indicative that IGF1 might exert sex-dependent actions af-
fecting other aspects of embryo function besides develop-
ment to the blastocyst stage (e.g., apoptosis, allocation of
cells into specific lineages, epigenetic regulation, etc.).
In general, there was no overall effect of sex on the

proportion of embryos that developed to the blastocyst
stage. Culture conditions, such as concentration of glu-
cose [36] and presence of serum in the culture medium
[37] can introduce a sex bias in development, which is
another indication of differential susceptibility of female
and male embryos to the environment. Culture condi-
tions in the experiments here used low concentrations
of glucose and the absence of serum [38].
The availability of sperm sorted based on the presence

of an X or Y chromosome makes the bovine an
easy-to-study species with respect to sexual dimorphism
in development of the preimplantation embryo. Sex sort-
ing of semen results in the desired sex in about 85–90%
of cases [39, 40]. Sperm can be damaged by the sorting
process [41, 42]. It is possible, therefore, that mixing
sires for fertilization, as was done in some of the current
experiments, could result in the relative number of em-
bryos produced by particular sires being different for
X-spermatozoa than Y-spermatozoa if damage did not
occur equally for sperm of both type. To overcome this
potential bias, all experiments were repeated using pro-
cedures where fertilization was performed with semen
from a single sire only and the experiment replicated for
several sires. Results were very similar whether multiple
sires or single sires were used for fertilization, strength-
ening the idea that the embryokines tested affect male
and female embryos similarly.
An important finding of these studies was the con-

firmation that IGF1, activin A and WNT7A enhance
competence of the bovine embryo to develop to the
blastocyst stage. Actions of IGF1 on the bovine embryo
to increase development and block apoptosis are well
described [16, 28, 43–45]. One of the few genes regulated
by IGF1 in the present experiment was TNFSF8, which
was upregulated by IGF1. Overexpression of CD30, the

protein encoded by TNFSF8, has an anti-apoptotic effect
[46]. One consequence of IGF1 treatment is increased
competence of the embryo to establish pregnancy after
transfer to heat stressed females [47–49]. While embryo-
trophic effects of IGF1 have been well characterized, this
are not the case for activin A and WNT7A. Here we con-
firm earlier findings that both activin A [13, 50] and
WNT7A [18] can increase the proportion of embryos that
develop to the blastocyst stage.

Conclusions
None of the three embryokines tested herein (IGF1, acti-
vin A and WNT7A) affected potential of the embryo to
develop to the blastocyst stage in a sex-specific manner.
This leads to the conclusion that sex-dependent differ-
ences in regulation of developmental competence of em-
bryos by maternal regulatory signals is not a general
phenomenon. Sex altered how IGF1 regulates expression
of specific genes, however, and such a result suggests
that there could be sexual dimorphism in embryokine
regulation of aspects of embryonic function other than
ability to develop to the blastocyst stage. Further experi-
mentation focused on endpoints such as apoptosis, cell
lineage commitment, epigenome, and development after
the blastocyst stage should be conducted to clarify the
situation.

Methods
Embryo production
Embryos were produced in vitro using oocytes harvested
from ovaries recovered from a local abattoir and either
X- or Y-sorted spermatozoa from Angus, Holstein or
Simmental sires that were either purchased from ABS
Global (De Forest, WI, USA) or Genex Cooperative
(Shawano, WI, USA) or were donated by Sexing Tech-
nologies (Navasota, TX, USA). Only bulls in which both
X- and Y-sorted spermatozoa were available were
selected. The oocyte maturation medium was either a
modified Tissue Culture Medium 199 [38] or, for experi-
ments with WNT7A, a commercial collection medium
called BO-IVM (IVF-Bioscience, Falmouth, Cornwall,
UK). Media for fertilization and embryo culture were as
described previously [38] except that fertilization
medium contained 0.2% (w/v) amikacin sulfate (Sig-
ma-Aldrich, St. Louis, MO, USA).
Procedures for in vitro oocyte maturation, in vitro

fertilization, and embryo culture were as described pre-
viously [15, 26, 38]. Briefly, groups of 10 cumulus-oocyte
complexes (COC) in 50 μL microdrops of oocyte matur-
ation medium covered with mineral oil (Sigma-Aldrich,
St. Louis, MO, USA) were matured for 22–24 h at 38.5 °
C and 5% (v/v) CO2 in a humidified atmosphere. Groups
of 30 matured COC were placed in 60 μl microdrops of
IVF-TALP overlaid with mineral oil and mixed with
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3.5 μl penicillamine-hypotaurine-epinephrine and 20 μl
of sperm in IVF-TALP (final concentration ~ 2 × 106/ml)
that had been purified using a Puresperm 40/80 gradient
(Nidacon International AB, Mölndal, Sweden). Depend-
ing on the experiments, sperm from a given replicate
were either a mixture of two bulls or were from a single
bull. In both types of experiments, the same bulls con-
tributed both X- and Y-bearing spermatozoa for an indi-
vidual replicate. Experiments were performed in several
replicates; individual bulls or pairs of bulls differed be-
tween replicates. Fertilization was carried out for 16–
18 h at 38.5 °C and a humidified atmosphere of 5% (v/v)
CO2. Presumptive zygotes were washed in HEPES-TALP
and then randomly placed in groups of 30 in 50 μl
microdrops of SOF-BE2 covered in mineral oil. Embryos
were cultured at 38.5 °C in a humidified atmosphere of
5% (v/v) O2, 5% (v/v) CO2 and the balance N2 or, for ex-
periment 1, 38.5 °C and 5% (v/v) CO2 in humidified air.
Treatments were added in a volume of 5 μl at Day 5
after insemination (i.e, 120 h after insemination). Cleav-
age was assessed on day 3 after insemination and blasto-
cyst development was evaluated 7.5 d after insemination.

Embryokine treatments
The procedure for treatment of embryos consisted of re-
placing 5 μl culture medium in the microdrop with 5 μl
SOF-BE2 containing the embryokine at ten times the final
concentration or the relevant vehicle. The final concentra-
tions of embryokine tested were 100 ng/ml for IGF1,
1 nM for activin A and 66 ng/ml for WNT7A. Treatments
concentrations were chosen because they were effective at
increasing the proportion of putative zygotes becoming
blastocyst [13, 16, 17]. Human activin A (amino acid se-
quence identity with bovine βA inhibin = 95%) and recom-
binant human IGF1 (amino acid sequence identity with
bovine IGF1 = 95%) were obtained from Sigma-Aldrich,
whereas recombinant human WNT7A (amino acid se-
quence identity with bovine WNT7A = 99%) was pur-
chased from eBioscience Inc. (San Diego, CA, USA). The
vehicle was SOF-BE2 diluted 1:5 (v/v) with water for
IGF1, Dulbecco’s phosphate-buffered saline (DPBS) with
0.1% (w/v) bovine serum albumin (BSA) for activin A and
a mixture of 97% SOF-BE2 (v/v) and 3% (v/v) of 10 mM
NaPO4, 500 mM NaCl and 0.5% (w/v) CHAPS diluted
1:100 (v/v) in DBPS-BSA for WNT7A.

Experiments
A total of six experiments (IGF1, experiments 1–2; activin
A, experiments 3–4; WNT7A, experiments 5–6) were
conducted. In each experiment, treatment (vehicle or
embryokine) was applied to 1–2 drops of embryos pro-
duced with either X- or Y-sorted spermatozoa. Each ex-
periment was replicated on several occasions, with bulls
varying between replicates. Depending on the experiment,

embryos in each replicate were produced by fertilization
with spermatozoa pooled from two bulls (experiments 1, 3
and 5) or with sperm from a single bull (experiments 2, 4
and 6). The total number of replicates for each experiment
were 16 (10 bulls total) for experiment 1, 6 (10 bulls; ex-
periment 2), 7 (6 bulls; experiment 3), 6 (8 bulls; experi-
ment 4), 5 (8 bulls; experiment 5) and 7 (6 bulls total;
experiment 6). In cases where the number of bulls is
greater than the number of replicates, more than one bull
was tested for some or all replicates.

RNA extraction and gene expression
Blastocysts exposed to IGF1 (experiments 1 and 2) were
harvested to evaluate gene expression. Immediately after
collection, blastocysts were washed three times in 50 μl
droplets of diethylpyrocarbonate (DEPC)-treated DPBS
containing 0.1% (w/v) polyvinylpyrrolidone (PVP) and
incubated with DEPC-treated DPBS-0.1% (w/v) protease
from Streptomyces griseus for zona pellucida removal.
Zona-free blastocysts were washed three times in
DPBS-PVP, and transferred into RNase/ DNase-free
microcentrifuge tubes, and snap frozen in liquid nitro-
gen. A pool of 10 blastocysts was frozen as a biological
replicate for gene expression analysis. There were a total
of 44 pools of blastocysts analyzed (17 for experiment 1
and 27 for experiment 2).
Each pool of embryos was subjected to RNA extrac-

tion using the Qiagen RNeasy Micro kit (Qiagen; Valen-
cia, CA, USA); DNase treatment was included as part of
the protocol. Reverse transcription was performed using
the High-Capacity cDNA Reverse Transcription Kit (Ap-
plied Biosystems; Foster City, CA, USA) following man-
ufacturer’s instructions.
The Fluidigm qPCR microfluidic device Biomark™ HD

system was used to analyze gene expression using
previously-described procedures [15]. The PCR primers
were designed and synthesized by Fluidigm (Fluidigm
Co., San Francisco, CA, USA). The set of primers for ex-
periment 1 [51] and experiment 2 [52] were detailed
elsewhere. After removing genes whose primers did not
meet validation criteria, there were 37 genes analyzed
for experiment 1 only, 37 genes analyzed for experiment
2 only and 55 genes that were analyzed for both experi-
ments [two housekeeping genes, ACTB and GAPDH,
and 53 other genes). Genes included those involved in
cellular differentiation, apoptosis, chemokine signaling
and early embryonic development.

Statistical analyses
Effect of treatment on the proportion of cleaved em-
bryos developing to the blastocyst stage was evaluated
using Proc GLIMMIX of SAS for Windows, version 9.4
(SAS Institute Inc., Cary, NC, USA). Each embryo was
considered an observation with binary response (0 = not
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developed to blastocyst, 1 = developed to blastocyst) and
analysis was performed by logistic regression fitting bin-
ary data distribution. The statistical model included the
fixed effects of treatment, sex, treatment by sex inter-
action and random effect of replicate (experiments 1, 3
and 5). For experiments 2, 4, and 6 bull was also in-
cluded in the model as a fixed effect.
Effect of treatment on gene expression was evaluated

using Proc GLM of SAS with treatment, sex and treat-
ment by sex interaction as fixed effects, and replicate as
random effect. Gene expression was calculated relative
to the geometric mean of two housekeeping genes
(ACTB and GAPDH). The ΔCt and 2ΔCt was calculated
for each gene.
For the 53 genes assessed in both experiments, data

were combined and the model included treatment, sex,
experiment, treatment by sex interaction, treatment by
experiment interaction, sex by experiment interaction,
and treatment by sex by experiment interaction as fixed
effects, and replicate as random effect. When interac-
tions were not significant, these terms were dropped
from the model and the statistical analysis rerun. The
response variable was ΔCt for both analyses. Results are
presented as fold-change data relative to the geometric
mean of the housekeeping genes (least-squares means ±
standard error of the mean).

Additional file

Additional file 1: Least-squares means of the fold-chage value for each
gene examined, by treatment (control vs IGF1), sex (female vs male), and
the interaction (P-values from dCT analyses). Tab 1: Genes measured only
in Experiment 1. Tab 2: Genes measured only in Experiment 2. Tab 3:
Genes measured in both Experiments 1 & 2. (XLS 95 kb)
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