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Abstract
Background: Human studies suggest, and mouse models clearly demonstrate, that
cytomegalovirus (CMV) is dysmorphic to early organ and tissue development. CMV has a particular
tropism for embryonic salivary gland and other head mesenchyme. CMV has evolved to co-opt cell
signaling networks so to optimize replication and survival, to the detriment of infected tissues. It
has been postulated that mesenchymal infection is the critical step in disrupting organogenesis. If
so, organogenesis dependent on epithelial-mesenchymal interactions would be particularly
vulnerable. In this study, we chose to model the vulnerability by investigating the cell and molecular
pathogenesis of CMV infected mouse embryonic submandibular salivary glands (SMGs).

Results: We infected E15 SMG explants with mouse CMV (mCMV). Active infection for up to 12
days in vitro results in a remarkable cell and molecular pathology characterized by atypical ductal
epithelial hyperplasia, apparent epitheliomesenchymal transformation, oncocytic-like stromal
metaplasia, β-catenin nuclear localization, and upregulation of Nfkb2, Relb, Il6, Stat3, and Cox2.
Rescue with an antiviral nucleoside analogue indicates that mCMV replication is necessary to
initiate and maintain SMG dysmorphogenesis.

Conclusion: mCMV infection of embryonic mouse explants results in dysplasia, metaplasia, and,
possibly, anaplasia. The molecular pathogenesis appears to center around the activation of
canonical and, perhaps more importantly, noncanonical NFκB. Further, COX-2 and IL-6 are
important downstream effectors of embryopathology. At the cellular level, there appears to be a
consequential interplay between the transformed SMG cells and the surrounding extracellular
matrix, resulting in the nuclear translocation of β-catenin. From these studies, a tentative
framework has emerged within which additional studies may be planned and performed.

Background
Nearly 75 years ago, Farber and Wolbach [1] reported that
postmortem examination of infants less than 1 year of age

often revealed large cells containing intranuclear and
cytoplasmic inclusion bodies in submandibular salivary
glands and, less frequently, in livers, lungs, kidneys, pan-
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creas, and thyroid. The large cells ("cytomegalia") were
found in acini and ducts of the affected submandibular
salivary glands, and the ducts were often dilated. It was
noted that the inclusions were similar to those found in
diseases due to "filtrable viruses." Twenty-five years later,
human cytomegalovirus (CMV) was isolated [2,3]. By a
decade or so after isolation, it was quite apparent that con-
genital infection with CMV was common and had variant
adverse consequences, from asymptomatic viruria to
lethality[4].

CMV is an enveloped, double-stranded DNA betaherpes-
virus which has been characterized in a large number of
mammalian species including humans and mice [5]. The
virus has a slow replication cycle, is species specific, and
demonstrates particular tropism for salivary glands, and,
to a lesser extent, other tissues (lung, kidney, liver, spleen,
bone marrow, heart, brain, placenta) [6,7]. In infected
newborns, CMV establishes a long-lasting persistence in
salivary glands and the virus is shed in saliva for months
to years before termination of productive infection and
establishment of latency [8].

It is estimated that about 2% of liveborn infants are con-
genitally infected. About 10–20% of this group have new-
born symptoms, and most of these infants will exhibit
subsequent abnormalities of the central nervous system
(CNS): microcephaly, mental retardation, deafness, and
blindness [9-11]. These estimates represent the prevalence
of infection and phenotypic outcomes at birth and
beyond, not the incidence of infection and associated out-
comes during the whole of gestation, particularly during
the highly ontogenic first trimester. Unfortunately, the
effect of CMV infection on early human embryogenesis is
uncertain because human studies of early malformation
and CMV infection are small, retrospective and tempo-
rally truncated [7,12-16]. Nevertheless, mouse models
clearly demonstrate that CMV disrupts early organ and tis-
sue development [17-21].

Since mouse CMV (mCMV) has many features in com-
mon with human CMV (hCMV) infection, the mouse
model has been widely employed to understand the
pathogenesis associated with acute, latent, and recurrent
infections [20]. When mCMV is introduced into the pla-
centa, the frequency and types of birth defects will depend
on the gestational age of infection. Baskar et al. [17-19]
have consistently observed substantial fetal loss (reduced
litter size and resorbed embryos), fetal growth retarda-
tion, and fetal dysmorphogenesis, particularly of the
craniofacial complex. Using in situ hybridization and
immunohistochemistry, they observed that viral
sequences and antigens were primarily localized to the
brain and salivary glands of malformed craniofacies.

Subsequently, Tsutsui [21] reported that viral antigen-
positive cells were abundant in the mesenchyme of the
oral and nasal cavities, and in the mesenchyme around
the brain. He postulated that mesenchymal infection is
the critical step in disrupting organogenesis. If so, organo-
genesis which is highly dependent on epithelial-mesen-
chymal interactions (salivary gland, lung, kidney,
pancreas, brain, etc.) would be particularly vulnerable to
early mCMV infection, and this may explain the frequent
fetal demise. In the present study, we chose to model this
vulnerability by investigating the cell and molecular
pathogenesis of mCMV infected mouse embryonic sub-
mandibular salivary glands (SMGs).

Mouse SMG development is initiated with a thickening of
the oral epithelium of the mandibular arch around
embryonic day 11.5 (E11.5) and is best conceptualized in
stages as branching morphogenesis forms the ductal sys-
tem and presumptive acini [22,23]. SMGs being a primary
target organ for mCMV replication, with little known
about the susceptibility of embryonic tissues, we infected
Canalicular (E15) SMG explants with salivary gland-
derived mCMV. Active infection for up to 12 days in vitro
results in a remarkable cellular and molecular pathology
characterized by atypical ductal epithelial hyperplasia,
apparent epitheliomesenchymal transformation, onco-
cytic-like stromal cell metaplasia, β-catenin nuclear local-
ization, and upregulation of Nfkb2, Relb, Il6, Stat3, and
Cox2. Rescue with an antiviral nucleoside analogue indi-
cates that mCMV replication is necessary to both initiate
and maintain SMG pathogenesis.

Results
Embryonic submandibular salivary glands (SMGs) at E15,
exposed to mCMV for up to 12 days in vitro, exhibit a sin-
gular pathologic phenotype, with dramatic cellular (Figs.
1, 2, 3, 4, 5, 6, 7, 11) and transcriptional (Table 1)
changes.

Histopathology
After 6 days in culture, E15 SMGs typically progress to the
Terminal Bud Stage: bilaminar, stratified epithelial ducts
and single-layered epithelial terminal buds display dis-
tinct lumina, and are embedded in a loosely-packed
stroma sparsely populated with fibroblasts (Fig. 1A, B).
E15 + 6 SMGs infected with 100,000 PFU mCMV show a
marked decline in branching epithelia; duct epithelia is
pseudostratified and poorly organized; duct, and perhaps
bud, lumina are greatly dilated (Fig. 1C, D). There is a sev-
eral-fold increase in cellularity of the stroma, particularly
at the periphery of the SMG (Fig. 1C). This zone of atypia
contains clusters of large, basophilic, pleiomorphic cells,
with high nuclear-to-cytoplasmic ratios, prominent nuclei
and nucleoli, and frequently inclusion bodies pathogno-
monic of mCMV infection (Fig. 1D).
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As the infection progresses, the stromal cells are com-
posed of two distinct cell types: large basophilic round
cells and smaller eosinophilic cells. In cross-section, the
basophilic cells appear to be emigrating from the epithelia
(Fig. 2A, B) and invaginating into ductal lumina (Fig. 2A,
B). By 12 days in culture, there is a further decline in
branching epithelia, and the further dilated lumen of the
pseudostratified ducts are filled with eosinophilic cells,
some living, some apoptotic (Fig. 2C, D). Throughout the
gland the stroma is hypercellular and no longer resembles
mesenchyme (Fig. 2C, D). The stromal cell type at E15 +
12 is unusual: large polygonal cells with large, darkly
staining, nuclei containing prominent nucleoli, densely
eosinophilic cytoplasm, and the frequent presence of
inclusion bodies (Fig. 2D). This plump, eosinophilic cell
type with mitochondrial hyperplasia (Fig. 2D, insert) is
suggestive of oncocytic metaplasia [24,25]. Other than in

some intraductal epithelial cells, there is scant evidence of
cell death in epithelial or stromal cells. This is consistent
with the well-documented CMV suppression of cell death
[26-33].

Dose response and time course
The severity of the morphologic changes in SMG develop-
ment is mCMV dose-dependent (Fig. 3). At 10,000 PFU,
SMGs are only moderately infected at the organ periphery,
and there is an approximate 25% decrease in gland size (P
< 0.01). At 50,000 PFU, SMGs are almost totally infected
at the periphery, and about a 40% decrease in gland size
(P < 0.001); this differs significantly from the smaller dose
(P < 0.01). There are no significant differences between
50,000, 100,000, and 200,000 PFU with respect to SMG
size. This is consistent with the fact that viral titers in

Histopathology of mCMV-infected E15 + 6 SMGsFigure 1
Histopathology of mCMV-infected E15 + 6 SMGs. A, B. E15 + 6 SMGs have achieved the Terminal Bud Stage, consisting of duc-
tal and terminal bud epithelia (e) which surround distinct lumina. The epithelial component is embedded in loosely-packed 
mesenchyme (m) sparsely populated by fibroblasts (arrows). C, D. E15 + 6 SMGs infected with 100,000 PFU mCMV exhibit a 
marked decrease in branching epithelia and greatly dilated lumina (*); clusters of large, basophilic, pleiomorphic cells, often with 
inclusion bodies (arrowheads), are seen in peripherally-localized mesenchyme (double arrows); centrally-localized cells retain 
their fibroblastic morphology (m). Bar: A, C: 100 μm; B, D: 20 μm.
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Morphology of progressive mCMV infection in SMGsFigure 2
Morphology of progressive mCMV infection in SMGs. A, B. In E15 + 10 mCMV-infected SMGs, the stromal cells are composed 
of 2 distinct cell types: large basophilic round cells and smaller eosinophilic cells. Basophilic cells can be seen emigrating from 
the epithelium into the stroma (arrows) and invaginating into the lumina (double arrowheads). Note the presence of pycnotic 
cells in ductal lumina (*). C-D. E15 + 12 mCMV infected SMGs exhibit a further decrease in branching epithelia and the large, 
dilated lumina are partially filled with eosinophilic lumina-filling cells (lf). The stroma is entirely composed of large polygonal 
cells with darkly staining nuclei, eosinophilic cytoplasm, and the frequent presence of inclusion bodies (arrowheads). Insert: 
Giant polygonal cells exhibit an increase in ATP synthetase protein (brown color), a marker of mitochondrial activity. Bar: A, B, 
D: 20 μm; C: 100 μm.
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SMGs exposed to any of these three doses, are not signifi-
cantly different at E15 + 6 (F2,9 = 1.48; P > 0.25).

At 100,000 PFU, the negative effect on branching mor-
phogenesis is evident early. There is a significant 50%
reduction in SMG size (P < 0.001) at E15 + 3, and this
reduction significantly increases (P < 0.02) through E15 +
12 (Fig. 4A, C, E), as epithelial structures are increasingly
replaced by metaplastic stromal cells (Fig 4B, D, F), and
viral titers significantly increase with increasing time of
exposure (P < 0.05). Immunodetection of mCMV imme-
diate early protein 1 (IE1) reveals that through the first 6

days of culture, mCMV infection is localized to mesenchy-
mal cells (fibroblasts)(Fig 4B, D); by 12 days, the infec-
tion is confined mostly to metaplastic stromal cells, but
may also be found in a few ductal epithelial cells and in
lumen-filling cells (Fig. 4F–J). These data are supported by
β-galactosidase localization, an indicator gene product
expressed from the virus we used (data not shown). It is
important to note that at least through 6 days of culture,
the infected fibroblasts are quite distant from much of the
affected branching epithelia (Figs. 1C, 4B, 4D), suggesting
paracrine factor diffusion from virus-infected areas. In this
regard, it is also important to note that, although there is

Dose-dependent effect of mCMV-infection on embryonic SMG developmentFigure 3
Dose-dependent effect of mCMV-infection on embryonic SMG development. E15+6 SMGs infected with 10,000 PFU mCMV 
(A) exhibit modest β-gal staining (viral presence) in the periphery, whereas SMGs infected with 50,000 PFU mCMV (B) exhibit 
staining almost completely throughout the gland. No β-gal staining is seen in control (CONT) SMGs. Bar:50 μm C. Relative to 
controls, there are significant (P < 0.01) declines in the size of mCMV-infected SMGs (as measured by area); this decline is dose 
dependent (P < 0.01). Comparisons of control and infected SMGs were based on matched pairs (right v. left in the same 
embryo). Samples sizes for each bar ranged from 6 to 29 matched pairs. True differences were determined by matched-pairs t-
test. See text for details.
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Time-dependent increase in mCMV infection of cultured SMGsFigure 4
Time-dependent increase in mCMV infection of cultured SMGs. A, C, E. β-gal (mCMV) staining of SMGs demonstrates a 
marked increase in viral infection with increased days in culture. B, D, F, G, H. Immunolocalization of viral IE1 protein. In E15 + 
3 (B) and E15 + 6 (D) mCMV-infected SMGs, IE1 protein is localized to mesenchymal cells (m) and not epithelial cells (e). F, G, 
I. In E15 + 12 mCMV-infected SMGs, IE1 protein is seen in metaplastic stromal cells (mc), in a few epithelial cells (arrows) and 
in lumen-filling cells (*). H. J. DAPI staining of E15 + 12 mCMV-infected SMGs shown in G, I. Bar: A: 62 μm; B-F: 50 μm; G, H-
J: 25 μm.
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a progressive spread of infection over the 12-day time
course, the majority of affected stromal cells remain unin-
fected throughout the observation period.

Cell proliferation
The clear decline in branching morphogenesis and
increase in stromal cellularity is directly correlated with
cell proliferation (Fig. 5). At E15 + 6, Terminal Bud Stage
SMGs typically exhibit evidence of proliferation mostly in
the branching epithelia, and very little in the mesenchyme
(Fig. 5A). In mCMV infected SMGs, this pattern is reversed
(Fig. 5B); mostly mesenchymal, not epithelial, cells are
proliferating.

IL-6 signaling plays an important dual role in SMG devel-
opment: branching morphogenesis through the SHP-2/
Ras mitogenic pathway and ductal maturation through
the STAT3 pathway [34]. In uninfected SMGs, IL-6 is
expressed in proliferating epithelial cells surrounding the
forming lumina (Fig. 5A, C), consistent with its mitogenic
pathway. In mCMV infected SMGs, however, IL-6 is more
intensely expressed in the non-proliferating epithelial
cells surrounding dilated lumina (Fig. 5B, D). This finding
suggests an upregulation of IL-6 expression and a prema-
ture shift to the STAT3 pathway for epithelial maturation.
This proposition is supported by our gene expression
studies below (Table 1) and by premature SMG terminal
differentiation (Fig. 5E, F), as determined by the expres-
sion of mucin (Muc10), a SMG-specific marker of epithe-
lial histodifferentiation [35,36]. To wit, in mCMV-
infected E15 + 6 SMGs, we see an increase in mucin pro-
tein translocated from cytoplasm to epithelial apical sur-
faces surrounding dilated lumina. In this regard, it is
important to note that by E15 + 12, many of the metaplas-
tic stromal cells are also expressing mucin (Fig. 5H–I),
consistent with an epithelial origin.

Cell characterization
SMG epithelium is characterized by cytoplasmic cytokera-
tin and adherens junctions (Fig. 6). In uninfected SMGs,
cytokeratin is exclusively seen in branching epithelia (Fig.
6A). In mCMV infected SMGs, cytokeratin is expressed in
the abnormal, dilated ductal structures composed of pseu-
dostratified squamous and lumina-filling epithelia, and
more diffusely in the metaplastic stromal cells adjacent to
this epithelia (Fig. 6B).

E-cadherin and p120 are important constituents of adhe-
rens junctions. In uninfected SMGs, E-cadherin is immu-
nolocalized exclusively to epithelial plasma membranes
(Fig. 6C). With mCMV infection, the pseudostratified
lumina epithelia display a decline in expressed E-cadherin
in cells facing the lumina and in cells facing the stromal
space; there is also subsequent cytoplasmic localization of
E-cadherin in metaplastic stromal cells adjacent to ductal

epithelia (Fig. 6D). In uninfected SMGs, p120 is expressed
adjacent to plasma membranes in epithelia (Fig. 6E); in
mCMV infected SMGs, p120 is expressed in all epithelia,
but markedly less in those cells which appear to be emi-
grating from ductal epithelia into the stroma (Fig. 6F).

Given these observations (Fig. 6B, D, F), as well as the
recent study by Davis and Reynolds [37] of embryonic
SMG epithelial dysplasia and E-cadherin deficiency in
p120 null mice, it is reasonable to suggest that the lumen-
filling cells are completely derived, and the metaplastic
stormal cells are at least partially derived, from epithe-
lium.

Recent studies indicate unexpected links between
fibronectin expression, COX-2 expression, and β-catenin
nuclear localization [38,39], as well as between CMV
infection and COX-2 expression [40-42]. Thus, we inves-
tigated the cellular distribution of fibronectin (FN), α5β1
integrin (FN receptor), COX-2 and β-catenin in Terminal
Bud Stage SMGs, with and without mCMV infection (Fig.
7). Normally, FN is primarily immunolocalized in ductal
and terminal bud epithelia basement membranes (Fig.
7A). With mCMV infection, there is a remarkable shift in
FN distribution: FN surrounds individual metaplastic
stromal cells, and there is a notable decline in basement
membranes (Fig. 7B). A similar change in α5β1 integrin is
seen with mCMV infection (Fig. 7B, insert). COX-2 is not
expressed in uninfected stromal cells (not shown), but is
localized in the cytoplasm of infected fibroblasts (Fig. 7C)
and metaplastic stromal cells (Fig. 7D, E) in mCMV
infected SMGs. This dramatic change is associated with a
change in Cox2 transcript level (Table 1). Concurrently, β-
catenin exhibits a most significant shift in location with
mCMV infection of SMGs. In Terminal Bud Stage SMGs, β-
catenin (an adherens junction constituent) is immunolo-
calized to the cytoplasm adjacent to epithelial plasma
membranes (Fig. 7F). With mCMV infection, β-catenin is
still expressed in intact epithelia, but, more importantly,
there is de novo expression in the nuclei of metaplastic
stromal cells adjacent to that epithelium (Fig. 7G, H).
Nuclear localization of β-catenin is indicative of its alter-
nate function as a transcription factor.

Transcription changes
Functional studies in our laboratory and elsewhere have
demonstrated that embryonic SMG organogenesis is regu-
lated through interconnected growth factor, cytokine, and
transcription factor-mediated signaling pathways, includ-
ing EGF, TGF-β, IGF, IL-6, Shh, and FGFs [22,23,34,43-
49]. The hub of this complex network of parallel and
broadly-related pathways is NFκB [44]. In the present
study, we employed real-time quantitative PCR to deter-
mine transcription changes with mCMV infection (Table
1). The 27 genes chosen include sentinel genes from the
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mCMV infection, cell proliferation, IL-6 expression, and mucin expressionFigure 5
mCMV infection, cell proliferation, IL-6 expression, and mucin expression. A, B. Cell proliferation. Cell proliferation was deter-
mined by the distribution of PCNA (brown color). In control E15 + 6 SMGs (A), PCNA positive nuclei are primarily seen in 
branching epithelia (double arrows) and rarely in mesenchyme (m). With mCMV infection (B), PCNA-positive nuclei are prima-
rily seen in mesenchymal cells (arrowheads) and, to a lesser degree, in epithelial cells (e). C, D. Immunolocalization of IL-6. A 
substantial increase in immunodetectable IL-6 is seen in mCMV-infected SMGs ductal epithelia (D) compared to controls (C). 
E-I. Immunolocalization of mucin protein. In E15 + 6 (E) and E15 + 12 (G) SMGs, mucin is localized to the cytoplasm of terminal 
bud epithelia (e). In mCMV-infected E15 + 6 SMGs (F), there is an increase in mucin localized to epithelial apical surfaces sur-
rounding dilated lumina (arrowheads). By day 12 (H, I), mCMV-infected SMGs are characterized by a notable decline in epithe-
lial-localized mucin; however, mucin is found in a subpopulation of metaplastic stromal cells (arrows). Sections C, D were 
counterstained with DAPI. Bar: A, B: 23 μm; C-F: 20 μm; G-I: 16 μm.
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Cell characterization: cytokeratin, E-cadherin, p120Figure 6
Cell characterization: cytokeratin, E-cadherin, p120. A, B. In control SMGs (A), cytokeratin is immunodetected in branching 
epithelia and not in mesenchyme; with mCMV infection (B), cytokeratin is detected in the abnormal epithelia, in lumen-filling 
cells (double black arrowheads), and in the cytoplasm of stromal cells (black arrows) adjacent to pseudostratified epithelia. C, 
D. In control SMGs (C), E-cadherin is localized solely to epithelial cell membranes. In mCMV infected SMGs (D), a decrease in 
E-cadherin immunostain is seen in epithelial cells facing the lumina (double white arrows) and in pseudostratified epithelia facing 
the stroma (double white arrowheads); E-cadherin is also localized to membranes of lumina-filling cells (white arrowhead) and 
to the cytoplasm of some metaplastic stromal cells (white arrow) adjacent to abnormal epithelia. E, F. p120 localization. In con-
trol SMGs (E), p120 is detected adjacent to epithelial plasma membranes and is absent from mesenchyme. With mCMV infec-
tion (F), p120 is seen in all epithelia, as well as in cells emigrating from ductal epithelia to stroma (double black arrow) and 
lumen-filling cells (black arrows). C, D were counterstained with DAPI. * lumen-filling cells. Bar: A, B, E, F: 20 μm; C, D: 27 μm.
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Cell characterization: fibronectin, α5β1 integrin, COX-2, and β-cateninFigure 7
Cell characterization: fibronectin, α5β1 integrin, COX-2, and β-catenin. A, B. In control E15 + 12 SMGs (A), fibronectin (FN) is 
primarily localized to epithelial (e) basement membranes (arrows). In mCMV-infected SMGs (B), FN surrounds individual stro-
mal cells and there is a marked decrease of FN in epithelial basement membranes. α5 integrin (B, insert) and β1 integrin (data 
not shown) are similarly localized. C-E. COX-2 is localized in E15 + 3 (C) mCMV-infected SMG fibroblasts (white arrowheads) 
and in metaplastic stromal cells (white arrows) of E15 + 6 (D) and E 15 + 12 (E) mCMV-infected SMGs. F-H. In control E15 + 
12 SMGs (F), β-catenin is immunodetected in the cytoplasm adjacent to epithelial, but not mesenchymal, plasma membranes. 
With mCMV infection (G, H), β-catenin is seen in intact epithelia, as well as in nuclei of metaplastic stromal cells (arrowheads). 
All sections were counterstained with DAPI. Bar: 20 μm.



BMC Developmental Biology 2006, 6:42 http://www.biomedcentral.com/1471-213X/6/42
signaling network [44], as well as those that characterize
cellular changes with mCMV infection (Figs. 5, 6, 7).

The results of these measurements are presented in Table
1. The relative expression ratio (R) is the mean increase or
decrease in gene expression in mCMV infected glands
compared to uninfected glands. The variation of R is cal-
culated as gene expression noise (η); η is statistically
equivalent to the coefficient of variation and ranges from
0 to 1 [50]. The value of η reflects fluctuations in the level
of promoter-binding or the abundance of a particular
transcription factor, variation in post-transcriptional
modifications, and a host of other stochastic events that
are characterized as intrinsic or extrinsic noise [50]. In the
absence of prohibitively large sample sizes, as η
approaches 1 it becomes extremely difficult to detect
small, but important, true differences in gene expression
levels, should they exist. Of the 27 genes measured, 6
exhibited statistically significant changes in expression
with mCMV infection: Nfkb2, Relb, Il6, Stat3, Erk1, Cox2.
These results are entirely consistent with previous studies

[41,44,51,52] and with our immunohistochemical stud-
ies (Figs. 5, 6, 7).

mCMV replication and pathology
There are two key questions about the relationship of viral
replication to the subsequent SMG pathology. First, is
mCMV replication necessary to initiate the pathogenesis?
Second, is mCMV replication necessary to maintain the
pathogenesis? To answer these questions, we utilized acy-
clovir, an antiherpesviral nucleoside active against mCMV
[53].

In the first experiment, E15 SMG explants were infected
for 24 hrs with mCMV and then cultured in the presence
or absence of acyclovir for an additional 5 days (Fig. 8).
Acyclovir treatment, as expected, surpresses mCMV repli-
cation (Fig. 8A, B); also, acyclovir treatment results in his-
tologically normal SMGs (Fig. 8C–F) with normal
patterns of cell proliferation (data not shown). This out-
come is associated with a highly significant mean reduc-
tion in SMG mCMV titer from 2.1 × 104 PFU to 20 PFU (P
< 0.01). The replication cycle is not completed by 24 hrs
of infection when antiviral treatment was initiated, so it
appears that completion of the viral replication cycle
beyond DNA replication is critical to the initiation of
SMG pathogenesis.

In the second experiment, E15 SMG explants were
infected with mCMV for 72 hrs, which allows for com-
plete viral replication, followed by culture for an addi-
tional three (E15 + 6) or nine (E15 + 12) days in the
presence or absence of acyclovir (Fig. 9). At E15 + 6, there
is an evident inhibition of mCMV with acyclovir treat-
ment (Fig. 9A); concomitantly, the SMGs are histologi-
cally near normal with only mildly dilated ducts,
increased branching, and mostly normal stroma (Fig. 9C,
D). By E15 + 12, there is only sparse evidence of detectable
mCMV in acyclovir-treated SMGs (Fig. 9B), with histolog-
ically normal epithelial branching and the relatively rare
appearance of metaplastic stromal cells (Fig. 9E, F). As is
normally seen (Fig 5A), cell proliferation is almost exclu-
sively seen in the branching epithelia (data not shown).
Thus, eventhough SMGs were subjected to unimpeded
mCMV replication for 72 hrs, the impact of reduced repli-
cation and spread was sufficient to dramatically reduce
viral cytopathology and associated developmental
changes. Embryonic cellular memory [54] appears insuffi-
cient to maintain progressive pathogenesis.

NFκB and mCMV-induced pathogenesis
Evidence indicates that the early CMV protein, IE1, acti-
vates canonical NFκB (p50/RelA) by inducing its nuclear
localization, rather than transcriptional/translational
upregulation [55,56]. Activated NFκB binds to the NFκB
recognition sites of viral ie genes and a large array of host

Table 1: mCMV Modulation of Embryonic SMG Gene 
Expression

Gene R η

Tgf/β1 0.84 0.11
Tgf/β2 0.67 0.40
Tgf/β3 0.76 0.58
Egfr 1.23 0.43
Tnf 2.10 0.55

Nfκb1 1.15 0.26
Nfκb2 1.83** 0.18
Rela 1.34 0.46
Relb 2.84*** 0.09
Il6 23.02*** 0.62

Stat3 1.72* 0.29
Jnk1 0.92 0.55
Erk1 0.64* 0.17
cmyc 1.78 0.68
Cycd1 0.79 0.71
Cycd2 1.29 0.44
p53 1.00 0.24

Mdm2 1.49 0.78
Casp3 1.39 0.37
Bcl2 0.67 0.67
Ecad 1.10 0.27
βcat 0.80 0.26
Lef1 0.72 0.61
Fn 1.58 0.37

Intβ1 1.42 0.64
Intα5 2.80 0.76
Cox2 15.27** 0.66

R = mean relative expression ratio= mCMV/control (R is the mean of 
3–5 independent experiments)
η = gene expression noise = sR/R (where sR = standard deviation of R)
* P < 0.05; ** P < 0.01; *** P < 0.001
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Acyclovir treatment inhibits mCMV replication and rescues the mCMV-induced abnormal phenotypeFigure 8
Acyclovir treatment inhibits mCMV replication and rescues the mCMV-induced abnormal phenotype. β-gal (mCMV) staining is 
seen throughout E15 + 6 SMGs infected with 50,000 PFU mCMV (A) but is absent from SMGs cultured with mCMV + acyclo-
vir (CMV + Acy) (B). C-F. Histological analysis of control (C), acyclovir-treated (Acy) (D), mCMV-infected (E), and mCMV-
infected explants treated with acyclovir (CMV + Acy) (F) SMGs. The epithelial (e) and mesenchymal (m) cellular morphology in 
CMV + Acy glands (F) is similar to that seen in control (C) and acyclovir-treated (D) SMGs. Note that acyclovir treatment of 
mCMV-infected SMGs (F) maintained the fibroblastic appearance of the mesenchyme (m); typically, mCMV-infected glands (E) 
exhibit clusters of large, basophilic abnormal cells (arrows) in the periphery. Bar: A, B: 50 μm; C-F: 20 μm.



BMC Developmental Biology 2006, 6:42 http://www.biomedcentral.com/1471-213X/6/42

Page 13 of 23
(page number not for citation purposes)

Acyclovir rescues E15 SMGs infected for 3 days with mCMV and cultured for an additional 3 days (E15 + 6) (A, C, D) or 9 days (E15 + 12) (B, C, F) in the presence (CMV + Acy3) or absence (CMV) of acyclovir treatmentFigure 9
Acyclovir rescues E15 SMGs infected for 3 days with mCMV and cultured for an additional 3 days (E15 + 6) (A, C, D) or 9 days 
(E15 + 12) (B, C, F) in the presence (CMV + Acy3) or absence (CMV) of acyclovir treatment. On day 6 (A), there is a decrease 
in β-gal (mCMV) staining in CMV + Acy3 SMGs compared to mCMV SMGs; by day 12 (B), acyclovir treatment results in sparse 
β-gal staining. At E15+6, with mCMV infection alone (C), abnormal epithelia surround dilated lumina (*) and clusters of atypical 
basophilic cells are seen in the periphery (arrows); in contrast, acyclovir treatment (D) partially restores the epithelial pheno-
type to that seen in control SMGs, with fewer atypical mesenchymal cells (arrows). At E15 + 12, acyclovir treatment (F) results 
in the near normal appearance of epithelia and mesenchyme (m); this markedly differs from the histopathology seen in E15 + 
12 CMV-infected SMGs (E). mc-metaplastic stromal cells. Bar: A, B: 50 μm; C-F: 30 μm.
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mCMV infection and SN50 inhibition of canonical NFκB nuclear translocationFigure 10
mCMV infection and SN50 inhibition of canonical NFκB nuclear translocation. With mCMV+SN50 treatment of E15 SMGs (B), 
there is a notable increase in β-gal (mCMV) staining compared to mCMV infection alone (A). Control E15 + 6 SMGs (C) are at 
the Terminal Bud Stage with epithelia surrounding distinct lumina; E15 + 6 SN50-treated SMGs (D) are characterized by a mod-
est decrease in epithelia and larger, somewhat dilated lumina. The glandular morphology of CMV + SN50 (F) differs from that 
seen with SN50 (D) or mCMV infection (E) alone. mCMV-infected E15 + 6 SMGs (E) exhibit peripherally-localized clusters of 
large, atypical, basophilic cells (arrows) and greatly dilated lumen (*); by contrast, the stroma of the CMV + SN50 E15 + 6 
SMGs is almost entirely composed of polygonal cells with darkly staining nuclei and often eosinophilic cytoplasm, the metaplas-
tic cell type typical of E15 + 12 mCMV-infected SMGs (compare to Fig. 9E). Bar: A, B: 50 μm; C-F: 30 μm.
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cell genes. It is reasonable, then, to expect that inhibition
of NFκB nuclear localization would moderate mCMV-
induced pathogenesis, either through an impact on the
virus or host cells. In fact, the results of just such an exper-
iment are quite the reverse of expected (Fig. 10). mCMV
infection of E15 SMGs in the presence of SN50, a cell per-
meable inhibitor of canonical NFκB nuclear transloca-
tion, exhibits an early accelerated viral replication (Fig.
10A, B) and SMG dysplasia. At E15 + 6 (Fig. 10E, F), the
pathology is more characteristic of the typical mCMV-
infected E15 + 12 SMGs (e.g. Fig. 9E).

These results are consistent with recent studies in human
and mouse fibroblast cells grown in culture suggesting
that canonical NFκB has paradoxical roles in infected cells
[56]. Further, Sonenshein's group [51,52] presents evi-
dence that non-canonical RelB dimers may be more criti-
cal to de novo host tissue gene expression and pathology.

Here we find an upregulation of Relb and Nfkb2 (Table 1),
as well as the nuclear localization of RelB (Fig. 11).
Indeed, compensatory upregulation of Relb and Nfkb2 in
the presence of SN50 may ultimately prove to be the
explanation for accelerated viral replication and pathol-
ogy (Fig. 10).

Discussion
Communication, reciprocal or otherwise, between epithe-
lium and mesenchyme is a critical ontogenic event for
many organs and tissues; salivary gland development is a
classic example [57]. Since human studies suggest [14,15],
and mouse models clearly demonstrate [17,21], that CMV
is dysmorphogenic to early organ and tissue develop-
ment, and since CMV has a particular affinity for embry-
onic and adult salivary glands [17,58], we investigated the
cell and transcriptional affects of mCMV infection on
developing mouse embryonic submandibular salivary

Immunolocalization of RelB and NFκB2 in mCMV-infected E15 + 6 SMGsFigure 11
Immunolocalization of RelB and NFκB2 in mCMV-infected E15 + 6 SMGs. A-C. RelB localization. Insert: NFκB2 localization. In 
control SMGs, RelB (A) (black arrowheads) and NFκB2 (insert, white arrows) are seen in epithelia surrounding forming lumina 
and not in the stroma. With CMV infection (B, C), RelB is seen in the nuclei of stromal cells (black arrows), many of which 
exhibit inclusion bodies. RelB is also seen in the nuclei of ductal epithelia (black arrowheads) surrounding enlarged lumina (C). 
In CMV-infected glands, NFκB2 is seen in the cytoplasm of large stroma cells (insert, white arrowheads) and epithelia sur-
rounding lumina (data not shown). Bar: 50 μm.
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glands (SMG). Our experimental results provide a portal
to the complexity of the pathogenesis. Figure 12 summa-
rizes and tentatively models our complex findings in the
context of the extant literature, and is explicated below.

With rare exception, viral protein (IE1) is only immunolo-
calized to stromal cells. After 12 days in culture, mCMV

infected E15 SMGs are highly dysmorphic. The epithelial
component, normally the principle cell type, is character-
ized by diminished proliferation, cessation of branching,
and a dramatic near absence of terminal buds (future
acini). Unlike normal ducts which have a bilaminar struc-
ture of stratified basal and luminal cell layers, affected
ducts display a disordered pseudostratified epithelium.

Working model of CMV-induced salivary gland dysmorphologyFigure 12
Working model of CMV-induced salivary gland dysmorphology. → Single or multistep stimulatory modification.  single or 
multistep stimulatory modification of unknown mechanism.  single or multistep inhibitory modification. RKT: Receptor Tyro-
sine Kinase. DNA: host DNA. vDNA: viral DNA.

– –
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The lumina are greatly enlarged and filled, to varying
degrees, with living and dead cells that appear to have
budded off the epithelium alone or in clusters, a pheno-
type reminiscent of secretory gland neoplasia. These
abnormal ductal structures are embedded in a hypercellu-
lar stroma that no longer resembles mesenchyme. Indeed,
the ductal basement membrane is greatly diminished and
epithelial cell migration appears to contribute to the stro-
mal cell population as well. The plump, polygonal-
shaped, stromal cells are generally characterized by large,
darkly staining nuclei, densely eosinophilic cytoplasm,
and mitochondrial hyperplasia. These cells very much
mimic oncocytotic metaplasia [24,25].

The proliferating stromal cells in infected SMGs are appar-
ently not homogeneous. One group appears to be epithe-
lial in origin and is characterized early on by cytoplasmic
localization of the epithelial proteins cytokeratin, E-cad-
herin, and p120, and later by epithelial-specific mucin
protein and nuclear localization of β-catenin; another
group has none of these characteristics and is probably of
fibroblast origin. Heterogeneity notwithstanding, in com-
mon, these stromal cells are individually surrounded by
fibronectin, anchored by α5/β1 integrin, and often
express COX-2 protein.

The initiation of mCMV/SMG fibroblast interaction is a
function of viral binding to the cell surface and viral entry
following fusion of its envelope to the cell membrane
[59]. Subsequent to viral entry, virion components,
including the viral genome, are rapidly transported to the
host cell nucleus for viral transcription and replication.
mCMV expresses ~200 viral products in a temporal, cas-
cade-like manner: immediate early (IE), early, and late.

To achieve its goals, the virus co-opts the host cell genome
and proteome. In the process, CMV infection of fibrob-
lasts inhibits cell cycle progression [60,61], as well as cell
death [27,29-32]. Thus, the infected host cell becomes a
homeostatic "factory" for viral replication and paracrine
signaling to uninfected SMG fibroblast and epithelial cells
nearby or distant (Fig. 12). Replication of active mCMV is
essential to the initiation and maintenance of embryonic
SMG pathogenesis (Figs. 8, 9). The primary response to
aberrant paracrine (and perhaps juxtacrine) signaling is
the transcription factor-mediated up or down regulation
of downstream genes. Our initial investigation has identi-
fied several important transcripts in this regard (Table 1).

Studies of the global and local properties of transcription-
regulating networks reveal that the number of target genes
regulated by each transcription factor follows a power-law
distribution, i.e. a small number of hub nodes are con-
nected to a very large number of other nodes (see review
[62]). One such hub critical to regulation of embryonic

SMG cell proliferation and apoptosis is NFκB [44]. NFκB
signaling occurs via two independent pathways, the
canonical NFκB1(p50)/RelA and the noncanonical
NFκB2(p52)/RelB.

It is well established that mCMV and hCMV induces
canonical NFκB during infection in fibroblasts, as well as
other cell types, and this activation facilitates viral replica-
tion in some but not all settings [56,63-66]. It appears that
viral IE1 activates NFκB by inducing nuclear localization,
rather than transcript upregulation [55,56]. Reciprocally,
there are NFκB recognition sites in the promoter and
enhancer regions of ie genes [67]. Here we report that viral
IE1 is expressed in the stromal cells of mCMV infected
embryonic SMGs (Fig. 4), and that there is a coincident
significant upregulation of noncanonical RelB and NFκB2
(p100/p52) transcript (Table 1). Recently, it has been
shown that IE1 also induces the transcription of Relb, and
that induction of the Relb promoter is mediated by JNK
activation of AP-1 [51,52]. Thus, it is reasonable to expect
that both pathways are activated and contributing to the
pathogenesis of embryonic SMGs (Fig. 12).

Even if so, it is not without its complexity. Recently, Ben-
edict et al. [56] have shown that for CMV replication in
cultured fibroblasts, activation of the canonical
NFκB1(p50)/RelA pathway and binding of p50/RelA to
the major ie gene promoter is dispensable. Indeed, RelA
may even suppress the potentiation of mCMV replication.
The studies reported here in whole SMG explants support
these findings (Fig. 10). Thus, while the canonical NFκB
pathway may be an early participant in host cell mCMV
replication and pathogenesis, paradoxically, it also buffers
both.

IL-6, an NFκB target, is a multifunctional cytokine that
mediates cell proliferation through the JAK-SHP2 path-
way and cell terminal differentiation and survival through
the JAK-STAT pathway [68,69]. IL-6 and its cognate recep-
tors (IL-6R, gp130) are normally expressed only in SMG
epithelia from the Canalicular Stage to the Late Terminal
Bud Stage, as are STAT3 and bcl2; IL-6 signaling is an
important factor in SMG developmental homeostasis
[34]. mCMV replication in embryonic SMGs results in an
enhanced expression of IL-6 protein in poorly proliferat-
ing ductal epithelia (Fig. 5), as well as a significant upreg-
ulation of Il6 (23-fold) and Stat3 (~2-fold) transcript and
downregulation of Erk1 transcript (Table 1).

Taken together, these findings are dispositive of the his-
topathology (Figs. 1, 5): early diminished cell division
and exaggerated maturation of ductal epithelia, and later
epithelial invasion of the ductal space and stroma. The
former is entirely consistent with the well-documented
observation that STAT3 levels are key to the cellular choice
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between proliferation and maturation, low levels favoring
proliferation and higher levels of maturation (see review
[70]). As to the latter, among STAT family members, EGF-
R-dependent and EGF-R-independent (i.e. IL-6) constitu-
tive activation of STAT3 is the most frequently associated
with deregulated (anti-apoptotic) cell growth and neopla-
sia [71]. Finally, it should be noted that the upregulation
of STAT3 is not necessarily related to the upregulation of
IL-6. Prior IL-6 gain of function studies reveal a dramatic
increase in epithelial branching consequent to a 3-fold
increase in epithelial cell proliferation, i.e. induction of
the mitogenic JAK-SHP2 pathway, not the JAK-STAT3
maturation pathway [34].

COX-2 is another NFκB target. Here we report that, with
mCMV infection, there is a highly significant, 15-fold,
increase in Cox2 transcript (Table 1), as well as a dramatic
appearance of COX-2 protein first in infected fibroblasts
and later in metaplastic stromal cells (Fig. 7). COX-2 con-
verts arachidonic acid to the intermediate PGH2, which is
then converted to PGE2 by PGE synthase; PGE2 release
from cells and binding to EP receptors, results in a broad
activation of cAMP with downstream effects similar to
protein kinase inducers (see review [72]). In the mCMV
associated pathogenesis of SMG dysplasia, NFκB-medi-
ated upregulation of COX-2 is most probably both
mCMV-induced and pathology-induced (Fig. 12).

Investigating the relationship between CMV infection,
induction of COX-2, synthesis of PGE2 and viral replica-
tion, Zhu et al. [41] found that after exposure of fibroblast
cells to CMV, the synthesis and release of PGE2 becomes
maximally elevated within the first 24 hrs, well before
release of progeny virus has begun. This is accompanied
by a dramatic increase in COX-2 protein in infected
fibroblasts. COX-2 inhibition by specific inhibitors results
in a downregulation of many viral transcripts and pro-
teins, including the IE transcriptional activator; conse-
quently, viral DNA synthesis and replication is
substantially blocked. Thus, elevated levels of COX-2 and
PGE2 are required for efficient replication of CMV in
fibroblasts. Our present results would suggest the same is
likely in SMG fibroblasts (Fig. 7C).

Additionally, with progressive mCMV-induced SMG
pathogenesis, one finds proliferating metaplastic stromal
cells individually anchored to fibronectin (FN) by α5/β1
integrin; many of these cells express COX-2 protein and
display nuclear localization of β-catenin (Figs. 1, 7).
Regardless of origin, the metaplastic stromal cells form
α5/β1 integrin complexes and deposit the cognate ligand,
FN. This large, extracellular matrix protein is assembled in
elastin fibrils and subjected to contractile forces [73]. α5/
β1 integrins serve as the interface between extracellular
tensile cues and biochemical signals in the cytosol [74],

including cell proliferation and cell survival [75,76]. Our
findings suggest the likely function in metaplastic stromal
cells of a recently described FN signaling cascade: FN →
α5/β1 → MAPK → NFκB → COX-2 ([38]; Fig. 12). COX-
2 mediated PGE2 signaling would directly activate β-cat-
enin nuclear translocation and the expression of survival
and growth-promoting genes [39], and perhaps the trans-
activation of tyrosine kinase receptors as well [77].

Finally, there is histologic and immunohistologic evi-
dence (Figs. 2, 6, 7) that suggests mCMV-induced epithe-
lial emigration and metaplasia – a kind of
epitheliomesenchymal transition (EMT): dissociation
towards single, disseminating polygonal cells with strong
nuclear accumulation of β-catenin. This is not unlike
some premalignant and malignant lesions (e.g. [78]). To
be sure, ex vivo, whole organ verification of EMT is difficult
to assay because of the transient and reversible nature of
the process per se, and the lack of definitive markers that
distinguish "neoplastic" cells undergoing EMT from
neighboring stromal fibroblasts [79]. Nevertheless, the
expression of epithelial-specific proteins (cytokeratin, E-
cadherin, p120 and mucin) in a subpopulation of stromal
cells would appear indicant, and could reasonably explain
why CMV-induced stromal changes closely phenocopy
oncocytic metaplasia.

The relationship between CMV and cancer has been con-
fusing, contradictory, and controversial. Thirty years ago,
Geder et al [80] reported the oncogenic transformation of
human embryonic lung cells by hCMV. The tumors were
composed of small, poorly differentiated, polygonal cells
with large nuclei and scanty cytoplasm embedded in
abundant matrix. In the ensuing years, the debate has
been well-joined (see e.g. [81-85]). mCMV-induced,
oncocytic-like, metaplasia and atypical ductal epithelial
hyperplasia in embryonic SMGs suggest that the relation-
ship between CMV and salivary gland tumors deserves a
fresh look, particularly since salivary glands are a primary
target for productive infection, subsequent latency, and
reactivation.

Conclusion
In summary, mCMV infection of embryonic mouse SMG
explants results in dysplasia, metaplasia, and possibly,
anaplasia. Initial investigation indicates that the molecu-
lar pathogenesis centers around the activation of canoni-
cal and, perhaps more importantly, noncanonical NFκB.
Further, COX-2 and IL-6 are key downstream effectors of
embryopathology. At the cellular level, there appears to be
a consequential interplay between the transformed SMG
cells and the surrounding extracellular matrix, resulting in
the nuclear translocation of β-catenin. Much is obviously
unknown. Nevertheless, a tentative framework has
emerged (Fig. 12) within which additional studies may be
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planned and performed to clarify the spatiotemporal
molecular pathogenesis.

Methods
Embryonic SMG culture system and mCMV infection
Female B10A/SnSg mice, obtained from Jackson Labora-
tories (Bar Harbor, ME), were maintained and mated as
previously described [22]; plug day = day 0 of gestation.
Timed-pregnant females were sacrificed on gestation day
15 (E15) and embryos were dissected in cold phosphate-
buffered saline (PBS). All animal studies were conducted
with the approval of the appropriate committees regulat-
ing animal research. An Animal Review Board and a
Vivaria Advisory Committee review all applications to
ensure ethical and humane treatment.

E15 SMG (mostly Canalicular Stage) primordia were cul-
tured using a modified Trowell method as previously
described [34,44,45]. The defined media consisted of
BGJb (Invitrogen Corporation, Carlsbad, CA) supple-
mented with 0.5 mg ascorbic acid/ml and 50 units/ml
penicillin/streptomycin (Invitrogen Corporation), pH
7.2; media was changed daily. Since notable differences in
SMG branch number and size are usually seen among lit-
termates, we employed a paired-design which compared
right and left glands (treated and control) from each
embryo.mCMV infection: on day 0, E15 SMGs were incu-
bated with 10,000 to 200,000 plaque-forming units
(PFU)/ml of lacZ-tagged mCMV RM427+ [86] for 24 hrs
and then cultured in virus-free BGJb defined media for an
additional 2–11 (E15 + 3 to E15 + 12) days. Explants were
collected and processed for whole mount morphology,
routine histology, immunohistochemistry or multigene
expression.

For whole mount morphological and size analyses, SMGs
were photographed using a Wilde dissecting microscope
at 25× and the area of each gland was determined using
Image-Pro Version 4.0 (Media Cybernetics, Silver Spring,
Maryland). The following groups were analyzed: 10,000
PFU: E15 + 3 (n = 7), E15 + 6 (n = 18); 50,000 PFU: E15
+ 3 (n= 11), E15 + 6 (n = 12); 100,000 PFU: E15 + 3 (n =
17), E15 + 6 (n = 29), E15 + 12 (n = 5); 200,000 PFU: E15
+ 3 (n = 6); E15 + 6 (n = 8). The significance of area differ-
ences between viral-infected and control SMGs was deter-
mined by Student t-test using a matched-pairs design.

For histological analysis, SMGs were fixed for 4 hrs in Car-
noy's fixative at 4°C or overnight in 10% neutral buffered
formalin at room temperature, embedded in paraffin,
serially-sectioned at 8 μm and stained with hematoxylin
and eosin as previously described [22,49]. For each exper-
imental protocol, 3–20 SMGs/mCMV concentration/day
were analyzed.

mCMV analysis
To obtain a measure of mCMV infection, we assayed for β-
galactosidase (lacZ) activity, viral titer/gland and localiza-
tion of viral immediate early (IE1) proteins. β-galactosi-
dase (β-gal) staining: Paired E15 + 3, E15 + 6 and E15 +
12 SMGs were fixed for 20 min at room temperature in
0.2% gluteraldehyde in PBS, washed 3 times in rinse solu-
tion (0.005% Nonidet P-40 and 0.01% sodium deoxycho-
late in PBS), stained for 4–6 hrs at room temperature in
standard staining solution (5 mM potassium ferricyanide,
5 mM potassium ferrocyanide, 2 mM MgCl2, 0.4% X-gal
in PBS), rinsed twice in PBS and microphotographed at
25×. β-gal whole mounts were then dehydrated through
graded alcohols, embedded in paraffin, serially-sectioned
at 8 μm and counterstained with eosin. Viral titer: E15 +
3 and E15 + 6 SMGs were collected, stored at -80°C in
DMEM shipping media [87] and titered by plaque assay as
previously described [87]. IE1 distribution: SMGs were
fixed in Carnoy's fixative, serially-sectioned at 8 μm, and
incubated overnight with anti-IEI as previously described
[88]. Controls consisted of sections incubated with mouse
IgG alone. For each experimental protocol, 3–10 SMGs/
mCMV concentration/day were analyzed.

Cell proliferation assay
Cell proliferation was determined by the localization of
PCNA (proliferating cell nuclear antigen) as previously
described [44]. Briefly, paired E15+ 3, E15 + 6 and E15 +
12 SMGs were fixed in Carnoy's fixative, serially-sec-
tioned, incubated with anti-PCNA using the Zymed
mouse PCNA kit (Invitrogen Corp.) and counterstained
with hematoxylin. In this experiment, the cytoplasm
appears blue and PCNA-positive nuclei appear dark
brown. Three sections per slide and 3–5 SMGs per group
were analyzed.

Antibodies and immunostaining
Immunolocalization was conducted essentially as previ-
ously described [34,44,45]. The following monoclonal
(Mab) and polyclonal (Pab) antibodies were used: Mab
ATP-synthetase (Mitochondria marker) (#MAB3494,
Chemicon International, Temecula, CA); Mab α5-integrin
(# 103801, Biolegend, San Diego, CA); Mab β1-integrin
(# 102201, BioLegend); Pab β-catenin (# AB19022,
Chemicon International); Pab cytokeratin (# ab9377,
Abcam Inc., Cambridge, MA); Pab COX-2 (# 160106,
Cayman Chemical Company, Ann Arbor, MI); Mab E-cad-
herin (# 610181, BD Biosciences, San Jose, CA); Pab FN
(# F3648, Sigma-Aldrich Corp., St. Louis, MO); Pab IL-6
(# sc-1265, Santa Cruz Biotechnology, Inc., Santa Cruz,
California); Pab p120 (# sc-1101, Santa Cruz Biotechnol-
ogy, Inc); Pab mucin [35]. For immunofluorescent analy-
ses, Pab's were incubated with biotin-labeled rabbit IgG or
anti-goat IgG (MP Biomedical, Aurora, OH) and then
with Alexa-Fluor-labeled streptavidin (Invitrogen Corpo-
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ration). Mab's were incubated with biotin-labeled anti-
mouse IgG or anti-rat IgG (Jackson Laboratories, West
grove, PA) and then with Alexa-Fluor-labeled streptavidin.
Hamster antibodies (β-1 integrin) were incubated in
FITC-labeled hamster IgG (Biolegend). Nuclei were coun-
terstained with DAPI (Invitrogen Corporation). Immuno-
histochemistry was conducted essentially as previously
described, using the Chemicon Tissue Staining Kit. Sec-
tions were viewed on a Zeiss Axioplan Microscope and
photographed using 10×, 20× and 40× objectives. Confo-
cal images were obtained using a Zeiss LSM-510 laser
scanning confocal/multiphoton microscope (Carl Zeiss
Inc. Thornwood NY) and the accompanying LSM version
3.2 image acquisition and analysis software. Cells were
imaged using a plan-neofluor 1.3 numerical aperture, 40×
objective lens. Alexa-Fluor- and FITC-labeled images were
captured using a 488 nm Argon laser for excitation and a
505–530 nm band-pass filter to detect emission. DAPI
images were captured using a 800 nm Mira titanium sap-
phire laser for excitation and a 390–465 nm band-pass fil-
ter to detect emission.

CMV replication and pathology
Acyclovir, a synthetic purine nucleoside analgogue, is a
highly selective agent for CMV with low toxicity to the
host cell [53]. Acyclovir sodium (100 mg/20 ml) was pur-
chased from American Pharmaceutical Partners, Inc
(Schaumberg, Il). Since acyclovir has been shown at high
doses to be teratogenic to rat embryos [89-91], we first
determined the highest dose that is not teratogenic to E15
SMGs in vitro. Paired E15 SMGs were cultured in acyclovir
(10 μg/ml, 20 μg/ml, 50 μg/ml or 100 μg/ml) or control
medium for 3 (E15 + 3) or 6 days (E15 + 6) and acyclovir
and control SMGs were compared by whole mount and
histological analyses. Since doses ≥ 20 μg/ml acyclovir
inhibited SMG branching and development, we
employed 10 μg/ml acyclovir in all future experiments.
Since no significant size differences were seen in SMGs
infected with 50,000, 100,000 or 200,000 PFU mCMV, we
infected SMGs with 50,000 PFU mCMV in this set of
experiments. In the first experiment, we compared paired
E15 SMGs infected with 50,000 PFU mCMV for 24 hrs
and then cultured in control medium +/- 10 μg/ml acyclo-
vir for a total of 6 days (CMV v. CMV + Acy) in culture;
controls consisted of paired E15 SMGs cultured in control
medium for 24 hrs and then in control medium +/- 10 μg/
ml acyclovir for a total of 6 days (CONT v. Acy). E15 + 6
SMGs were collected and analyzed for whole mount mor-
phology, mCMV infection (β-gal staining, titer determina-
tion), histopathology, and cell proliferation as described
above. In the second experiment, E15 SMG explants were
infected with mCMV for 72 hrs and cultured for an addi-
tional 3 (E15 + 6) or 9 (E15 + 12) days in the presence or
absence of 10 μg/ml acyclovir (CMV v. CMV + Acy3).
Controls consisted of E15 SMGs cultured in control

medium (CONT) or control medium to which 10 μg/ml
acyclovir was added after 72 hrs (Acy3). E15 + 6 and E15
+ 12 SMGs were analyzed for whole mount morphology,
mCMV infection (β-gal staining), histopathology, and cell
proliferation. For each assay, 3–15 SMGs/group/day were
analyzed.

SN50 inhibition of canonical NFκB nuclear translocation
The cell permeable peptide SN50 (Biomol Research, Ply-
mouth Meeting, PA) has been shown to inhibit canonical
NFκB translocation into the nucleus. Previous studies in
our laboratory have demonstrated that 100 μg/ml SN50
results in significant inhibition of SMG development [44].
In this set of experiments, we compared E15 + 6 SMGs
infected with 50, 000 PFU mCMV and cultured in the
presence or absence of 100 μg/ml SN50 for the entire cul-
ture period; concurrent control and SN50-treated E15 + 6
SMGs were also compared. As an additional control
experiment, we cultured mCMV-infected SMGs in the
presence or absence of SN50M, the control peptide; no
differences were seen between E15 + 6 mCMV-infected
and mCMV-infected + SN50M explants. The SMGs were
analyzed for mCMV infection (β-gal staining) and his-
topathology; 3–10 explants/group were analyzed.

RT-PCR
Paired E15 + 6 SMGs infected with 100,000 PFU CMV or
cultured in BGJb control medium were pooled (10–12
SMGs/sample) and stored at -80°C in Trizol (Invitrogen
Corporation). The glands were homogenized using lysing
matrix D (FastRNA Pro Green kit, Q-Biogene, Morgan
Irvine, CA) and RNA was extracted using the Trizol proto-
col according to manufacturer. One microgram RNA was
reverse transcribed into first strand cDNA using Reaction-
Ready™ First Strand cDNA Synthesis Kit: C-01 for reverse
transcription (Superarray Biosciences, Frederick, MD).
The kit uses random primers (hexamers) and MMLV
reverse transcriptase to reverse transcribe the entire popu-
lation of RNA in an unbiased manner. Real time quantita-
tive PCR was conducted with a BioRad iCycler® using
primers and templates mixed with the PA011 master mix
(RT2 Real-Time™ SYBR Green/Fluorescein PCR master
mix, Superarray Bioscences). The primer sets used were
prevalidated to give single amplicons and purchased from
Superarray Biosciences: Bcl2 (#PPM02918A-24),
Caspase3 (#PPM02922A-22), c-myc (#PPM02924A-24),
Cdh1 (#PPM03652A-24), Ctnnb1 (#PPM03384A-24),
Cox2 (#PPM03647A-24), cyclinD1 (#PPM02903A-24),
cyclinD2 (#PPM02900A-24), Egfr (#PPM03714A-24),
Fn1 (#PPM03786A-24), Il6 (#PPM03015A-24), Jnk1
(#PPM03234A-24), Itga5 (#PPMO3609A-24), Itgb1
(#PPM03668A-24), Lef1 (#PPM05441A-24), Mapk3
(#PPM03585A-24), Mdm2 (#PPM02929A-24), Nfkb1
(#PPM02930A-24), Nfkb2 (#PPM03204A-24), p53
(#PPM02931A-24), Rela (#PPM04224A-24), Relb
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(#PPMO3202A-24), Stat3 (PPM04643A-24), TGFb1 (#
PPM02991A-24), Tgfb2 (#PPM02992A-24), Tgfb3
(#PPM02993A-24), Tnf (#PPM03113A-24). Primers were
used at concentration of 0.4 microM. The cycling parame-
ters were 95°C, 15 min; 40 cycles of (95°C, 15 sec; 55°C,
30–40 sec and 72°C, 30 sec). Specificity of the reactions
was determined by subsequent melting curve analysis. RT-
PCRs of RNA (not reverse transcribed) were used as nega-
tive controls. GAPDH was used to control for equal cDNA
imputs and the levels of PCR product were expressed as a
function of GAPDH. The relative fold changes of gene
expression between the CMV-infected and control glands
were calculated by the 2-ΔΔCT method. For each gene of
interest, we analyzed 3–5 independent samples. Signifi-
cant departures from the hypothesis that there are no dif-
ferences between CMV-infected and control glands were
determined by Student t-test.
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